allow DMMAX to be defined externally
[unix-history] / usr / src / sys / vax / vax / autoconf.c
/* autoconf.c 6.5 84/02/03 */
/*
* Setup the system to run on the current machine.
*
* Configure() is called at boot time and initializes the uba and mba
* device tables and the memory controller monitoring. Available
* devices are determined (from possibilities mentioned in ioconf.c),
* and the drivers are initialized.
*
* N.B.: A lot of the conditionals based on processor type say
* #if VAX780
* and
* #if VAX750
* which may be incorrect after more processors are introduced if they
* are like either of these machines.
*
* TODO:
* use pcpu info about whether a ubasr exists
*/
#include "mba.h"
#include "uba.h"
#include "../machine/pte.h"
#include "../h/param.h"
#include "../h/systm.h"
#include "../h/map.h"
#include "../h/buf.h"
#include "../h/dk.h"
#include "../h/vm.h"
#include "../h/conf.h"
#include "../h/dmap.h"
#include "../vax/cpu.h"
#include "../vax/mem.h"
#include "../vax/mtpr.h"
#include "../vax/nexus.h"
#include "../vax/scb.h"
#include "../vaxmba/mbareg.h"
#include "../vaxmba/mbavar.h"
#include "../vaxuba/ubareg.h"
#include "../vaxuba/ubavar.h"
/*
* The following several variables are related to
* the configuration process, and are used in initializing
* the machine.
*/
int cold; /* if 1, still working on cold-start */
int nexnum; /* current nexus number */
int dkn; /* number of iostat dk numbers assigned so far */
/*
* Addresses of the (locore) routines which bootstrap us from
* hardware traps to C code. Filled into the system control block
* as necessary.
*/
#if NMBA > 0
int (*mbaintv[4])() = { Xmba0int, Xmba1int, Xmba2int, Xmba3int };
#endif
#if VAX780
int (*ubaintv[4])() = { Xua0int, Xua1int, Xua2int, Xua3int };
#endif
/*
* This allocates the space for the per-uba information,
* such as buffered data path usage.
*/
struct uba_hd uba_hd[MAXNUBA];
/*
* Determine mass storage and memory configuration for a machine.
* Get cpu type, and then switch out to machine specific procedures
* which will probe adaptors to see what is out there.
*/
configure()
{
union cpusid cpusid;
register struct percpu *ocp;
register int *ip;
extern char Sysbase[];
cpusid.cpusid = mfpr(SID);
for (ocp = percpu; ocp->pc_cputype; ocp++)
if (ocp->pc_cputype == cpusid.cpuany.cp_type) {
probenexus(ocp);
/*
* Write protect the scb and UNIBUS interrupt vectors.
* It is strange that this code is here, but this is
* as soon as we are done mucking with it, and the
* write-enable was done in assembly language
* to which we will never return.
*/
ip = (int *)Sysmap + 1; *ip &= ~PG_PROT; *ip |= PG_KR;
ip++; *ip &= ~PG_PROT; *ip |= PG_KR;
#if NUBA > 1
ip++; *ip &= ~PG_PROT; *ip |= PG_KR;
#endif
mtpr(TBIS, Sysbase);
#if GENERIC
setconf();
#endif
/*
* Configure swap area and related system
* parameter based on device(s) used.
*/
swapconf();
cold = 0;
memenable();
return;
}
printf("cpu type %d not configured\n", cpusid.cpuany.cp_type);
asm("halt");
}
/*
* Probe nexus space, finding the interconnects
* and setting up and probing mba's and uba's for devices.
*/
/*ARGSUSED*/
probenexus(pcpu)
register struct percpu *pcpu;
{
register struct nexus *nxv;
struct nexus *nxp = pcpu->pc_nexbase;
union nexcsr nexcsr;
int i;
nexnum = 0, nxv = nexus;
for (; nexnum < pcpu->pc_nnexus; nexnum++, nxp++, nxv++) {
nxaccess(nxp, Nexmap[nexnum]);
if (badaddr((caddr_t)nxv, 4))
continue;
if (pcpu->pc_nextype && pcpu->pc_nextype[nexnum] != NEX_ANY)
nexcsr.nex_csr = pcpu->pc_nextype[nexnum];
else
nexcsr = nxv->nexcsr;
if (nexcsr.nex_csr&NEX_APD)
continue;
switch (nexcsr.nex_type) {
case NEX_MBA:
printf("mba%d at tr%d\n", nummba, nexnum);
if (nummba >= NMBA) {
printf("%d mba's", nummba);
goto unconfig;
}
#if NMBA > 0
mbafind(nxv, nxp);
nummba++;
#endif
break;
case NEX_UBA0:
case NEX_UBA1:
case NEX_UBA2:
case NEX_UBA3:
printf("uba%d at tr%d\n", numuba, nexnum);
if (numuba >= 4) {
printf("5 uba's");
goto unsupp;
}
#if VAX780
if (cpu == VAX_780)
setscbnex(ubaintv[numuba]);
#endif
i = nexcsr.nex_type - NEX_UBA0;
unifind((struct uba_regs *)nxv, (struct uba_regs *)nxp,
umem[i], pcpu->pc_umaddr[i], UMEMmap[i]);
#if VAX780
if (cpu == VAX_780)
((struct uba_regs *)nxv)->uba_cr =
UBACR_IFS|UBACR_BRIE|
UBACR_USEFIE|UBACR_SUEFIE|
(((struct uba_regs *)nxv)->uba_cr&0x7c000000);
#endif
numuba++;
break;
case NEX_DR32:
/* there can be more than one... are there other codes??? */
printf("dr32");
goto unsupp;
case NEX_MEM4:
case NEX_MEM4I:
case NEX_MEM16:
case NEX_MEM16I:
printf("mcr%d at tr%d\n", nmcr, nexnum);
if (nmcr >= 4) {
printf("5 mcr's");
goto unsupp;
}
switch (cpu) {
case VAX_780:
mcrtype[nmcr] = M780C;
break;
case VAX_750:
mcrtype[nmcr] = M750;
break;
case VAX_730:
mcrtype[nmcr] = M730;
break;
}
mcraddr[nmcr++] = (struct mcr *)nxv;
break;
case NEX_MEM64I:
case NEX_MEM64L:
case NEX_MEM64LI:
printf("mcr%d (el) at tr%d\n", nmcr, nexnum);
if (nmcr >= 4) {
printf("5 mcr's");
goto unsupp;
}
if (cpu == VAX_780)
mcrtype[nmcr] = M780EL;
mcraddr[nmcr++] = (struct mcr *)nxv;
if (nexcsr.nex_type != NEX_MEM64I)
break;
/* fall into ... */
case NEX_MEM64U:
case NEX_MEM64UI:
printf("mcr%d (eu) at tr%d\n", nmcr, nexnum);
if (nmcr >= 4) {
printf("5 mcr's");
goto unsupp;
}
if (cpu == VAX_780)
mcrtype[nmcr] = M780EU;
mcraddr[nmcr++] = (struct mcr *)nxv;
break;
case NEX_MPM0:
case NEX_MPM1:
case NEX_MPM2:
case NEX_MPM3:
printf("mpm");
goto unsupp;
case NEX_CI:
printf("ci");
goto unsupp;
default:
printf("nexus type %x", nexcsr.nex_type);
unsupp:
printf(" unsupported (at tr %d)\n", nexnum);
continue;
unconfig:
printf(" not configured\n");
continue;
}
}
}
#if NMBA > 0
struct mba_device *mbaconfig();
/*
* Find devices attached to a particular mba
* and look for each device found in the massbus
* initialization tables.
*/
mbafind(nxv, nxp)
struct nexus *nxv, *nxp;
{
register struct mba_regs *mdp;
register struct mba_drv *mbd;
register struct mba_device *mi;
register struct mba_slave *ms;
int dn, dt, sn;
struct mba_device fnd;
mdp = (struct mba_regs *)nxv;
mba_hd[nummba].mh_mba = mdp;
mba_hd[nummba].mh_physmba = (struct mba_regs *)nxp;
setscbnex(mbaintv[nummba]);
fnd.mi_mba = mdp;
fnd.mi_mbanum = nummba;
for (mbd = mdp->mba_drv, dn = 0; mbd < &mdp->mba_drv[8]; mbd++, dn++) {
if ((mbd->mbd_ds&MBDS_DPR) == 0)
continue;
mdp->mba_sr |= MBSR_NED; /* si kludge */
dt = mbd->mbd_dt & 0xffff;
if (dt == 0)
continue;
if (mdp->mba_sr&MBSR_NED)
continue; /* si kludge */
if (dt == MBDT_MOH)
continue;
fnd.mi_drive = dn;
#define qeq(a, b) ( a == b || a == '?' )
if ((mi = mbaconfig(&fnd, dt)) && (dt & MBDT_TAP))
for (sn = 0; sn < 8; sn++) {
mbd->mbd_tc = sn;
for (ms = mbsinit; ms->ms_driver; ms++)
if (ms->ms_driver == mi->mi_driver &&
ms->ms_alive == 0 &&
qeq(ms->ms_ctlr, mi->mi_unit) &&
qeq(ms->ms_slave, sn) &&
(*ms->ms_driver->md_slave)(mi, ms, sn)) {
printf("%s%d at %s%d slave %d\n"
, ms->ms_driver->md_sname
, ms->ms_unit
, mi->mi_driver->md_dname
, mi->mi_unit
, sn
);
ms->ms_alive = 1;
ms->ms_ctlr = mi->mi_unit;
ms->ms_slave = sn;
}
}
}
mdp->mba_cr = MBCR_INIT;
mdp->mba_cr = MBCR_IE;
}
/*
* Have found a massbus device;
* see if it is in the configuration table.
* If so, fill in its data.
*/
struct mba_device *
mbaconfig(ni, type)
register struct mba_device *ni;
register int type;
{
register struct mba_device *mi;
register short *tp;
register struct mba_hd *mh;
for (mi = mbdinit; mi->mi_driver; mi++) {
if (mi->mi_alive)
continue;
tp = mi->mi_driver->md_type;
for (mi->mi_type = 0; *tp; tp++, mi->mi_type++)
if (*tp == (type&MBDT_TYPE))
goto found;
continue;
found:
#define match(fld) (ni->fld == mi->fld || mi->fld == '?')
if (!match(mi_drive) || !match(mi_mbanum))
continue;
printf("%s%d at mba%d drive %d\n",
mi->mi_driver->md_dname, mi->mi_unit,
ni->mi_mbanum, ni->mi_drive);
mi->mi_alive = 1;
mh = &mba_hd[ni->mi_mbanum];
mi->mi_hd = mh;
mh->mh_mbip[ni->mi_drive] = mi;
mh->mh_ndrive++;
mi->mi_mba = ni->mi_mba;
mi->mi_drv = &mi->mi_mba->mba_drv[ni->mi_drive];
mi->mi_mbanum = ni->mi_mbanum;
mi->mi_drive = ni->mi_drive;
/*
* If drive has never been seen before,
* give it a dkn for statistics.
*/
if (mi->mi_driver->md_info[mi->mi_unit] == 0) {
mi->mi_driver->md_info[mi->mi_unit] = mi;
if (mi->mi_dk && dkn < DK_NDRIVE)
mi->mi_dk = dkn++;
else
mi->mi_dk = -1;
}
(*mi->mi_driver->md_attach)(mi);
return (mi);
}
return (0);
}
#endif
/*
* Fixctlrmask fixes the masks of the driver ctlr routines
* which otherwise save r10 and r11 where the interrupt and br
* level are passed through.
*/
fixctlrmask()
{
register struct uba_ctlr *um;
register struct uba_device *ui;
register struct uba_driver *ud;
#define phys(a,b) ((b)(((int)(a))&0x7fffffff))
for (um = ubminit; ud = phys(um->um_driver, struct uba_driver *); um++)
*phys(ud->ud_probe, short *) &= ~0xc00;
for (ui = ubdinit; ud = phys(ui->ui_driver, struct uba_driver *); ui++)
*phys(ud->ud_probe, short *) &= ~0xc00;
}
/*
* Find devices on a UNIBUS.
* Uses per-driver routine to set <br,cvec> into <r11,r10>,
* and then fills in the tables, with help from a per-driver
* slave initialization routine.
*/
unifind(vubp, pubp, vumem, pumem, memmap)
struct uba_regs *vubp, *pubp;
caddr_t vumem, pumem;
struct pte *memmap;
{
#ifndef lint
register int br, cvec; /* MUST BE r11, r10 */
#else
/*
* Lint doesn't realize that these
* can be initialized asynchronously
* when devices interrupt.
*/
register int br = 0, cvec = 0;
#endif
register struct uba_device *ui;
register struct uba_ctlr *um;
u_short *reg, *ap, addr;
struct uba_hd *uhp;
struct uba_driver *udp;
int i, (**ivec)(), haveubasr;
caddr_t ualloc, zmemall();
extern int catcher[256];
/*
* Initialize the UNIBUS, by freeing the map
* registers and the buffered data path registers
*/
uhp = &uba_hd[numuba];
uhp->uh_map = (struct map *)calloc(UAMSIZ * sizeof (struct map));
ubainitmaps(uhp);
haveubasr = cpu == VAX_780;
/*
* Save virtual and physical addresses
* of adaptor, and allocate and initialize
* the UNIBUS interrupt vector.
*/
uhp->uh_uba = vubp;
uhp->uh_physuba = pubp;
if (numuba == 0)
uhp->uh_vec = UNIvec;
#if NUBA > 1
else if (numuba == 1)
uhp->uh_vec = UNI1vec;
else {
#if defined(VAX_750)
if (cpu == VAX_750)
printf("More than 2 UBA's not supported\n");
else
#endif
uhp->uh_vec = (int(**)())calloc(512);
}
#endif
for (i = 0; i < 128; i++)
uhp->uh_vec[i] =
scbentry(&catcher[i*2], SCB_ISTACK);
/*
* Set last free interrupt vector for devices with
* programmable interrupt vectors. Use is to decrement
* this number and use result as interrupt vector.
*/
uhp->uh_lastiv = 0x200;
ubaaccess(pumem, memmap);
#if VAX780
if (haveubasr) {
vubp->uba_sr = vubp->uba_sr;
vubp->uba_cr = UBACR_IFS|UBACR_BRIE;
}
#endif
/*
* Grab some memory to record the umem address space we allocate,
* so we can be sure not to place two devices at the same address.
*
* We could use just 1/8 of this (we only want a 1 bit flag) but
* we are going to give it back anyway, and that would make the
* code here bigger (which we can't give back), so ...
*
* One day, someone will make a unibus with something other than
* an 8K i/o address space, & screw this totally.
*/
ualloc = zmemall(memall, 8*1024);
if (ualloc == (caddr_t)0)
panic("no mem for unifind");
/*
* Map the first page of UNIBUS i/o
* space to the first page of memory
* for devices which will need to dma
* output to produce an interrupt.
*/
*(int *)(&vubp->uba_map[0]) = UBAMR_MRV;
#define ubaoff(off) ((off)&0x1fff)
#define ubaddr(off) (u_short *)((int)vumem + (ubaoff(off)|0x3e000))
/*
* Check each unibus mass storage controller.
* For each one which is potentially on this uba,
* see if it is really there, and if it is record it and
* then go looking for slaves.
*/
for (um = ubminit; udp = um->um_driver; um++) {
if (um->um_ubanum != numuba && um->um_ubanum != '?')
continue;
addr = (u_short)um->um_addr;
/*
* use the particular address specified first,
* or if it is given as "0", of there is no device
* at that address, try all the standard addresses
* in the driver til we find it
*/
for (ap = udp->ud_addr; addr || (addr = *ap++); addr = 0) {
if (ualloc[ubaoff(addr)])
continue;
reg = ubaddr(addr);
if (badaddr((caddr_t)reg, 2))
continue;
#if VAX780
if (haveubasr && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
cvec = 0x200;
i = (*udp->ud_probe)(reg, um->um_ctlr);
#if VAX780
if (haveubasr && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
if (i == 0)
continue;
printf("%s%d at uba%d csr %o ",
udp->ud_mname, um->um_ctlr, numuba, addr);
if (cvec == 0) {
printf("zero vector\n");
continue;
}
if (cvec == 0x200) {
printf("didn't interrupt\n");
continue;
}
printf("vec %o, ipl %x\n", cvec, br);
um->um_alive = 1;
um->um_ubanum = numuba;
um->um_hd = &uba_hd[numuba];
um->um_addr = (caddr_t)reg;
udp->ud_minfo[um->um_ctlr] = um;
for (ivec = um->um_intr; *ivec; ivec++) {
um->um_hd->uh_vec[cvec/4] =
scbentry(*ivec, SCB_ISTACK);
cvec += 4;
}
for (ui = ubdinit; ui->ui_driver; ui++) {
if (ui->ui_driver != udp || ui->ui_alive ||
ui->ui_ctlr != um->um_ctlr && ui->ui_ctlr != '?' ||
ui->ui_ubanum != numuba && ui->ui_ubanum != '?')
continue;
if ((*udp->ud_slave)(ui, reg)) {
ui->ui_alive = 1;
ui->ui_ctlr = um->um_ctlr;
ui->ui_ubanum = numuba;
ui->ui_hd = &uba_hd[numuba];
ui->ui_addr = (caddr_t)reg;
ui->ui_physaddr = pumem + ubdevreg(addr);
if (ui->ui_dk && dkn < DK_NDRIVE)
ui->ui_dk = dkn++;
else
ui->ui_dk = -1;
ui->ui_mi = um;
/* ui_type comes from driver */
udp->ud_dinfo[ui->ui_unit] = ui;
printf("%s%d at %s%d slave %d\n",
udp->ud_dname, ui->ui_unit,
udp->ud_mname, um->um_ctlr, ui->ui_slave);
(*udp->ud_attach)(ui);
}
}
break;
}
}
/*
* Now look for non-mass storage peripherals.
*/
for (ui = ubdinit; udp = ui->ui_driver; ui++) {
if (ui->ui_ubanum != numuba && ui->ui_ubanum != '?' ||
ui->ui_alive || ui->ui_slave != -1)
continue;
addr = (u_short)ui->ui_addr;
for (ap = udp->ud_addr; addr || (addr = *ap++); addr = 0) {
if (ualloc[ubaoff(addr)])
continue;
reg = ubaddr(addr);
if (badaddr((caddr_t)reg, 2))
continue;
#if VAX780
if (haveubasr && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
cvec = 0x200;
i = (*udp->ud_probe)(reg);
#if VAX780
if (haveubasr && vubp->uba_sr) {
vubp->uba_sr = vubp->uba_sr;
continue;
}
#endif
if (i == 0)
continue;
printf("%s%d at uba%d csr %o ",
ui->ui_driver->ud_dname, ui->ui_unit, numuba, addr);
if (cvec == 0) {
printf("zero vector\n");
continue;
}
if (cvec == 0x200) {
printf("didn't interrupt\n");
continue;
}
printf("vec %o, ipl %x\n", cvec, br);
while (--i >= 0)
ualloc[ubaoff(addr+i)] = 1;
ui->ui_hd = &uba_hd[numuba];
for (ivec = ui->ui_intr; *ivec; ivec++) {
ui->ui_hd->uh_vec[cvec/4] =
scbentry(*ivec, SCB_ISTACK);
cvec += 4;
}
ui->ui_alive = 1;
ui->ui_ubanum = numuba;
ui->ui_addr = (caddr_t)reg;
ui->ui_physaddr = pumem + ubdevreg(addr);
ui->ui_dk = -1;
/* ui_type comes from driver */
udp->ud_dinfo[ui->ui_unit] = ui;
(*udp->ud_attach)(ui);
break;
}
}
#ifdef AUTO_DEBUG
printf("Unibus allocation map");
for (i = 0; i < 8*1024; ) {
register n, m;
if ((i % 128) == 0) {
printf("\n%6o:", i);
for (n = 0; n < 128; n++)
if (ualloc[i+n])
break;
if (n == 128) {
i += 128;
continue;
}
}
for (n = m = 0; n < 16; n++) {
m <<= 1;
m |= ualloc[i++];
}
printf(" %4x", m);
}
printf("\n");
#endif
wmemfree(ualloc, 8*1024);
}
setscbnex(fn)
int (*fn)();
{
register struct scb *scbp = &scb;
scbp->scb_ipl14[nexnum] = scbp->scb_ipl15[nexnum] =
scbp->scb_ipl16[nexnum] = scbp->scb_ipl17[nexnum] =
scbentry(fn, SCB_ISTACK);
}
/*
* Make a nexus accessible at physical address phys
* by mapping kernel ptes starting at pte.
*
* WE LEAVE ALL NEXI MAPPED; THIS IS PERHAPS UNWISE
* SINCE MISSING NEXI DONT RESPOND. BUT THEN AGAIN
* PRESENT NEXI DONT RESPOND TO ALL OF THEIR ADDRESS SPACE.
*/
nxaccess(physa, pte)
struct nexus *physa;
register struct pte *pte;
{
register int i = btop(sizeof (struct nexus));
register unsigned v = btop(physa);
do
*(int *)pte++ = PG_V|PG_KW|v++;
while (--i > 0);
mtpr(TBIA, 0);
}
ubaaccess(pumem, pte)
caddr_t pumem;
register struct pte *pte;
{
register int i = 512;
register unsigned v = btop(pumem);
do
*(int *)pte++ = PG_V|PG_KW|v++;
while (--i > 0);
mtpr(TBIA, 0);
}
#define DMMIN 32
#ifndef DMMAX
#define DMMAX 1024
#endif
#define DMTEXT 1024
#define MAXDUMP (10*2048)
/*
* Configure swap space and related parameters.
*/
swapconf()
{
register struct swdevt *swp;
register int nblks;
for (swp = swdevt; swp->sw_dev; swp++) {
if (bdevsw[major(swp->sw_dev)].d_psize)
nblks =
(*bdevsw[major(swp->sw_dev)].d_psize)(swp->sw_dev);
if (swp->sw_nblks == 0 || swp->sw_nblks > nblks)
swp->sw_nblks = nblks;
}
if (!cold) /* in case called for mba device */
return;
if (dumplo == 0)
dumplo = swdevt[0].sw_nblks - MAXDUMP;
if (dumplo < 0)
dumplo = 0;
if (dmmin == 0)
dmmin = DMMIN;
if (dmmax == 0)
dmmax = DMMAX;
if (dmtext == 0)
dmtext = DMTEXT;
if (dmtext > dmmax)
dmtext = dmmax;
}