fix to reeves fix of dgo handling (reset b_active to 1)
[unix-history] / usr / src / sys / vax / uba / ubavar.h
/* ubavar.h 4.25 82/04/11 */
/*
* This file contains definitions related to the kernel structures
* for dealing with the unibus adapters.
*
* Each uba has a uba_hd structure.
* Each unibus controller which is not a device has a uba_ctlr structure.
* Each unibus device has a uba_device structure.
*/
#ifndef LOCORE
/*
* Per-uba structure.
*
* This structure holds the interrupt vector for the uba,
* and its address in physical and virtual space. At boot time
* we determine the devices attached to the uba's and their
* interrupt vectors, filling in uh_vec. We free the map
* register and bdp resources of the uba into the structures
* defined here.
*
* During normal operation, resources are allocated and returned
* to the structures here. We watch the number of passive releases
* on each uba, and if the number is excessive may reset the uba.
*
* When uba resources are needed and not available, or if a device
* which can tolerate no other uba activity (rk07) gets on the bus,
* then device drivers may have to wait to get to the bus and are
* queued here. It is also possible for processes to block in
* the unibus driver in resource wait (mrwant, bdpwant); these
* wait states are also recorded here.
*/
struct uba_hd {
struct uba_regs *uh_uba; /* virt addr of uba */
struct uba_regs *uh_physuba; /* phys addr of uba */
int (**uh_vec)(); /* interrupt vector */
struct uba_device *uh_actf; /* head of queue to transfer */
struct uba_device *uh_actl; /* tail of queue to transfer */
short uh_mrwant; /* someone is waiting for map reg */
short uh_bdpwant; /* someone awaits bdp's */
int uh_bdpfree; /* free bdp's */
int uh_hangcnt; /* number of ticks hung */
int uh_zvcnt; /* number of 0 vectors */
int uh_errcnt; /* number of errors */
int uh_lastiv; /* last free interrupt vector */
short uh_users; /* transient bdp use count */
short uh_xclu; /* an rk07 is using this uba! */
#define UAMSIZ 25
struct map *uh_map; /* buffered data path regs free */
};
#ifndef LOCORE
/*
* Per-controller structure.
* (E.g. one for each disk and tape controller, and other things
* which use and release buffered data paths.)
*
* If a controller has devices attached, then there are
* cross-referenced uba_drive structures.
* This structure is the one which is queued in unibus resource wait,
* and saves the information about unibus resources which are used.
* The queue of devices waiting to transfer is also attached here.
*/
struct uba_ctlr {
struct uba_driver *um_driver;
short um_ctlr; /* controller index in driver */
short um_ubanum; /* the uba it is on */
short um_alive; /* controller exists */
int (**um_intr)(); /* interrupt handler(s) */
caddr_t um_addr; /* address of device in i/o space */
struct uba_hd *um_hd;
/* the driver saves the prototype command here for use in its go routine */
int um_cmd; /* communication to dgo() */
int um_ubinfo; /* save unibus registers, etc */
struct buf um_tab; /* queue of devices for this controller */
};
/*
* Per ``device'' structure.
* (A controller has devices or uses and releases buffered data paths).
* (Everything else is a ``device''.)
*
* If a controller has many drives attached, then there will
* be several uba_device structures associated with a single uba_ctlr
* structure.
*
* This structure contains all the information necessary to run
* a unibus device such as a dz or a dh. It also contains information
* for slaves of unibus controllers as to which device on the slave
* this is. A flags field here can also be given in the system specification
* and is used to tell which dz lines are hard wired or other device
* specific parameters.
*/
struct uba_device {
struct uba_driver *ui_driver;
short ui_unit; /* unit number on the system */
short ui_ctlr; /* mass ctlr number; -1 if none */
short ui_ubanum; /* the uba it is on */
short ui_slave; /* slave on controller */
int (**ui_intr)(); /* interrupt handler(s) */
caddr_t ui_addr; /* address of device in i/o space */
short ui_dk; /* if init 1 set to number for iostat */
int ui_flags; /* parameter from system specification */
short ui_alive; /* device exists */
short ui_type; /* driver specific type information */
caddr_t ui_physaddr; /* phys addr, for standalone (dump) code */
/* this is the forward link in a list of devices on a controller */
struct uba_device *ui_forw;
/* if the device is connected to a controller, this is the controller */
struct uba_ctlr *ui_mi;
struct uba_hd *ui_hd;
};
#endif
/*
* Per-driver structure.
*
* Each unibus driver defines entries for a set of routines
* as well as an array of types which are acceptable to it.
* These are used at boot time by the configuration program.
*/
struct uba_driver {
int (*ud_probe)(); /* see if a driver is really there */
int (*ud_slave)(); /* see if a slave is there */
int (*ud_attach)(); /* setup driver for a slave */
int (*ud_dgo)(); /* fill csr/ba to start transfer */
u_short *ud_addr; /* device csr addresses */
char *ud_dname; /* name of a device */
struct uba_device **ud_dinfo; /* backpointers to ubdinit structs */
char *ud_mname; /* name of a controller */
struct uba_ctlr **ud_minfo; /* backpointers to ubminit structs */
short ud_xclu; /* want exclusive use of bdp's */
};
#endif
/*
* Flags to UBA map/bdp allocation routines
*/
#define UBA_NEEDBDP 0x01 /* transfer needs a bdp */
#define UBA_CANTWAIT 0x02 /* don't block me */
#define UBA_NEED16 0x04 /* need 16 bit addresses only */
#define UBA_HAVEBDP 0x08 /* use bdp specified in high bits */
/*
* Macros to bust return word from map allocation routines.
*/
#define UBAI_BDP(i) ((int)(((unsigned)(i))>>28))
#define UBAI_NMR(i) ((int)((i)>>18)&0x3ff)
#define UBAI_MR(i) ((int)((i)>>9)&0x1ff)
#define UBAI_BOFF(i) ((int)((i)&0x1ff))
#ifndef LOCORE
#ifdef KERNEL
/*
* UBA related kernel variables
*/
int numuba; /* number of uba's */
struct uba_hd uba_hd[];
/*
* Ubminit and ubdinit initialize the mass storage controller and
* device tables specifying possible devices.
*/
extern struct uba_ctlr ubminit[];
extern struct uba_device ubdinit[];
/*
* UNIbus device address space is mapped by UMEMmap
* into virtual address umem[][].
*/
extern struct pte UMEMmap[][512]; /* uba device addr pte's */
extern char umem[][512*NBPG]; /* uba device addr space */
/*
* Since some VAXen vector their first (and only) unibus interrupt
* vector just adjacent to the system control block, we must
* allocate space there when running on ``any'' cpu. This space is
* used for the vector for uba0 on all cpu's.
*/
extern int (*UNIvec[])(); /* unibus vec for uba0 */
#if VAX780
/*
* On 780's, we must set the scb vectors for the nexus of the
* UNIbus adaptors to vector to locore unibus adaptor interrupt dispatchers
* which make 780's look like the other VAXen.
*/
extern Xua0int(), Xua1int(), Xua2int(), Xua3int();
#endif VAX780
#endif KERNEL
#endif !LOCORE