BSD 4_4_Lite2 development
[unix-history] / usr / src / contrib / calc-2.9.3t6 / zio.c
/*
* Copyright (c) 1994 David I. Bell
* Permission is granted to use, distribute, or modify this source,
* provided that this copyright notice remains intact.
*
* Scanf and printf routines for arbitrary precision integers.
*/
#include "stdarg.h"
#include "zmath.h"
#define OUTBUFSIZE 200 /* realloc size for output buffers */
#define PUTCHAR(ch) math_chr(ch)
#define PUTSTR(str) math_str(str)
#define PRINTF1(fmt, a1) math_fmt(fmt, a1)
#define PRINTF2(fmt, a1, a2) math_fmt(fmt, a1, a2)
long _outdigits_ = 20; /* default digits for output */
int _outmode_ = MODE_INITIAL; /* default output mode */
/*
* Output state that has been saved when diversions are done.
*/
typedef struct iostate IOSTATE;
struct iostate {
IOSTATE *oldiostates; /* previous saved state */
long outdigits; /* digits for output */
int outmode; /* output mode */
FILE *outfp; /* file unit for output (if any) */
char *outbuf; /* output string buffer (if any) */
long outbufsize; /* current size of string buffer */
long outbufused; /* space used in string buffer */
BOOL outputisstring; /* TRUE if output is to string buffer */
};
static IOSTATE *oldiostates = NULL; /* list of saved output states */
static FILE *outfp = NULL; /* file unit for output */
static char *outbuf = NULL; /* current diverted buffer */
static BOOL outputisstring = FALSE;
static long outbufsize;
static long outbufused;
/*
* zio_init - perform needed initilization work
*
* On some systems, one cannot initialize a pointer to a FILE *.
* This routine, called once at startup is a work-a-round for
* systems with such bogons.
*/
void
zio_init()
{
static int done = 0; /* 1 => routine already called */
if (!done) {
outfp = stdout;
done = 1;
}
}
/*
* Routine to output a character either to a FILE
* handle or into a string.
*/
void
math_chr(ch)
int ch;
{
char *cp;
if (!outputisstring) {
fputc(ch, outfp);
return;
}
if (outbufused >= outbufsize) {
cp = (char *)realloc(outbuf, outbufsize + OUTBUFSIZE + 1);
if (cp == NULL)
math_error("Cannot realloc output string");
outbuf = cp;
outbufsize += OUTBUFSIZE;
}
outbuf[outbufused++] = (char)ch;
}
/*
* Routine to output a null-terminated string either
* to a FILE handle or into a string.
*/
void
math_str(str)
char *str;
{
char *cp;
int len;
if (!outputisstring) {
fputs(str, outfp);
return;
}
len = strlen(str);
if ((outbufused + len) > outbufsize) {
cp = (char *)realloc(outbuf, outbufsize + len + OUTBUFSIZE + 1);
if (cp == NULL)
math_error("Cannot realloc output string");
outbuf = cp;
outbufsize += (len + OUTBUFSIZE);
}
memcpy(&outbuf[outbufused], str, len);
outbufused += len;
}
/*
* Output a null-terminated string either to a FILE handle or into a string,
* padded with spaces as needed so as to fit within the specified width.
* If width is positive, the spaces are added at the front of the string.
* If width is negative, the spaces are added at the end of the string.
* The complete string is always output, even if this overflows the width.
* No characters within the string are handled specially.
*/
void
math_fill(str, width)
char *str;
long width;
{
if (width > 0) {
width -= strlen(str);
while (width-- > 0)
PUTCHAR(' ');
PUTSTR(str);
} else {
width += strlen(str);
PUTSTR(str);
while (width++ < 0)
PUTCHAR(' ');
}
}
/*
* Routine to output a printf-style formatted string either
* to a FILE handle or into a string.
*/
#ifdef VARARGS
# define VA_ALIST fmt, va_alist
# define VA_DCL char *fmt; va_dcl
#else
# if defined(__STDC__) && __STDC__ == 1
# define VA_ALIST char *fmt, ...
# define VA_DCL
# else
# define VA_ALIST fmt
# define VA_DCL char *fmt;
# endif
#endif
/*VARARGS*/
void
math_fmt(VA_ALIST)
VA_DCL
{
va_list ap;
char buf[200];
#ifdef VARARGS
va_start(ap);
#else
va_start(ap, fmt);
#endif
vsprintf(buf, fmt, ap);
va_end(ap);
math_str(buf);
}
/*
* Flush the current output stream.
*/
void
math_flush()
{
if (!outputisstring)
fflush(outfp);
}
/*
* Divert further output so that it is saved into a string that will be
* returned later when the diversion is completed. The current state of
* output is remembered for later restoration. Diversions can be nested.
* Output diversion is only intended for saving output to "stdout".
*/
void
math_divertio()
{
register IOSTATE *sp;
sp = (IOSTATE *) malloc(sizeof(IOSTATE));
if (sp == NULL)
math_error("No memory for diverting output");
sp->oldiostates = oldiostates;
sp->outdigits = _outdigits_;
sp->outmode = _outmode_;
sp->outfp = outfp;
sp->outbuf = outbuf;
sp->outbufsize = outbufsize;
sp->outbufused = outbufused;
sp->outputisstring = outputisstring;
outbufused = 0;
outbufsize = 0;
outbuf = (char *) malloc(OUTBUFSIZE + 1);
if (outbuf == NULL)
math_error("Cannot allocate divert string");
outbufsize = OUTBUFSIZE;
outputisstring = TRUE;
oldiostates = sp;
}
/*
* Undivert output and return the saved output as a string. This also
* restores the output state to what it was before the diversion began.
* The string needs freeing by the caller when it is no longer needed.
*/
char *
math_getdivertedio()
{
register IOSTATE *sp;
char *cp;
sp = oldiostates;
if (sp == NULL)
math_error("No diverted state to restore");
cp = outbuf;
cp[outbufused] = '\0';
oldiostates = sp->oldiostates;
_outdigits_ = sp->outdigits;
_outmode_ = sp->outmode;
outfp = sp->outfp;
outbuf = sp->outbuf;
outbufsize = sp->outbufsize;
outbufused = sp->outbufused;
outbuf = sp->outbuf;
outputisstring = sp->outputisstring;
return cp;
}
/*
* Clear all diversions and set output back to the original destination.
* This is called when resetting the global state of the program.
*/
void
math_cleardiversions()
{
while (oldiostates)
free(math_getdivertedio());
}
/*
* Set the output routines to output to the specified FILE stream.
* This interacts with output diversion in the following manner.
* STDOUT diversion action
* ---- --------- ------
* yes yes set output to diversion string again.
* yes no set output to stdout.
* no yes set output to specified file.
* no no set output to specified file.
*/
void
math_setfp(newfp)
FILE *newfp;
{
outfp = newfp;
outputisstring = (oldiostates && (newfp == stdout));
}
/*
* Set the output mode for numeric output.
* This also returns the previous mode.
*/
int
math_setmode(newmode)
int newmode;
{
int oldmode;
if ((newmode <= MODE_DEFAULT) || (newmode > MODE_MAX))
math_error("Setting illegal output mode");
oldmode = _outmode_;
_outmode_ = newmode;
return oldmode;
}
/*
* Set the number of digits for float or exponential output.
* This also returns the previous number of digits.
*/
long
math_setdigits(newdigits)
long newdigits;
{
long olddigits;
if (newdigits < 0)
math_error("Setting illegal number of digits");
olddigits = _outdigits_;
_outdigits_ = newdigits;
return olddigits;
}
/*
* Print an integer value as a hex number.
* Width is the number of columns to print the number in, including the
* sign if required. If zero, no extra output is done. If positive,
* leading spaces are typed if necessary. If negative, trailing spaces are
* typed if necessary. The special characters 0x appear to indicate the
* number is hex.
*/
/*ARGSUSED*/
void
zprintx(z, width)
ZVALUE z;
long width;
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
char *str;
if (width) {
math_divertio();
zprintx(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
len = z.len - 1;
if (zisneg(z))
PUTCHAR('-');
if ((len == 0) && (*z.v <= (FULL) 9)) {
len = '0' + *z.v;
PUTCHAR(len);
return;
}
hp = z.v + len;
PRINTF1("0x%x", (FULL) *hp--);
while (--len >= 0)
PRINTF1("%04x", (FULL) *hp--);
}
/*
* Print an integer value as a binary number.
* The special characters 0b appear to indicate the number is binary.
*/
/*ARGSUSED*/
void
zprintb(z, width)
ZVALUE z;
long width;
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
HALF val; /* current value */
HALF mask; /* current mask */
int didprint; /* nonzero if printed some digits */
int ch; /* current char */
char *str;
if (width) {
math_divertio();
zprintb(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
len = z.len - 1;
if (zisneg(z))
PUTCHAR('-');
if ((len == 0) && (*z.v <= (FULL) 1)) {
len = '0' + *z.v;
PUTCHAR(len);
return;
}
hp = z.v + len;
didprint = 0;
PUTSTR("0b");
while (len-- >= 0) {
val = *hp--;
mask = (1 << (BASEB - 1));
while (mask) {
ch = '0' + ((mask & val) != 0);
if (didprint || (ch != '0')) {
PUTCHAR(ch);
didprint = 1;
}
mask >>= 1;
}
}
}
/*
* Print an integer value as an octal number.
* The number begins with a leading 0 to indicate that it is octal.
*/
/*ARGSUSED*/
void
zprinto(z, width)
ZVALUE z;
long width;
{
register HALF *hp; /* current word to print */
int len; /* number of halfwords to type */
int num1='0', num2='0'; /* numbers to type */
int rem; /* remainder number of halfwords */
char *str;
if (width) {
math_divertio();
zprinto(z, 0L);
str = math_getdivertedio();
math_fill(str, width);
free(str);
return;
}
if (zisneg(z))
PUTCHAR('-');
len = z.len;
if ((len == 1) && (*z.v <= (FULL) 7)) {
num1 = '0' + *z.v;
PUTCHAR(num1);
return;
}
hp = z.v + len - 1;
rem = len % 3;
switch (rem) { /* handle odd amounts first */
case 0:
num1 = (((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8);
num2 = (((FULL) (hp[-1] & 0xff)) << 16) + ((FULL) hp[-2]);
rem = 3;
break;
case 1:
num1 = 0;
num2 = (FULL) hp[0];
break;
case 2:
num1 = (((FULL) hp[0]) >> 8);
num2 = (((FULL) (hp[0] & 0xff)) << 16) + ((FULL) hp[-1]);
break;
}
if (num1)
PRINTF2("0%o%08o", num1, num2);
else
PRINTF1("0%o", num2);
len -= rem;
hp -= rem;
while (len > 0) { /* finish in groups of 3 halfwords */
num1 = (((FULL) hp[0]) << 8) + (((FULL) hp[-1]) >> 8);
num2 = (((FULL) (hp[-1] & 0xff)) << 16) + ((FULL) hp[-2]);
PRINTF2("%08o%08o", num1, num2);
hp -= 3;
len -= 3;
}
}
/*
* Print a decimal integer to the terminal.
* This works by dividing the number by 10^2^N for some N, and
* then doing this recursively on the quotient and remainder.
* Decimals supplies number of decimal places to print, with a decimal
* point at the right location, with zero meaning no decimal point.
* Width is the number of columns to print the number in, including the
* decimal point and sign if required. If zero, no extra output is done.
* If positive, leading spaces are typed if necessary. If negative, trailing
* spaces are typed if necessary. As examples of the effects of these values,
* (345,0,0) = "345", (345,2,0) = "3.45", (345,5,8) = " .00345".
*/
void
zprintval(z, decimals, width)
ZVALUE z; /* number to be printed */
long decimals; /* number of decimal places */
long width; /* number of columns to print in */
{
int depth; /* maximum depth */
int n; /* current index into array */
int i; /* number to print */
long leadspaces; /* number of leading spaces to print */
long putpoint; /* digits until print decimal point */
long digits; /* number of digits of raw number */
BOOL output; /* TRUE if have output something */
BOOL neg; /* TRUE if negative */
ZVALUE quo, rem; /* quotient and remainder */
ZVALUE leftnums[32]; /* left parts of the number */
ZVALUE rightnums[32]; /* right parts of the number */
if (decimals < 0)
decimals = 0;
if (width < 0)
width = 0;
neg = (z.sign != 0);
leadspaces = width - neg - (decimals > 0);
z.sign = 0;
/*
* Find the 2^N power of ten which is greater than or equal
* to the number, calculating it the first time if necessary.
*/
_tenpowers_[0] = _ten_;
depth = 0;
while ((_tenpowers_[depth].len < z.len) || (zrel(_tenpowers_[depth], z) <= 0)) {
depth++;
if (_tenpowers_[depth].len == 0)
zsquare(_tenpowers_[depth-1], &_tenpowers_[depth]);
}
/*
* Divide by smaller 2^N powers of ten until the parts are small
* enough to output. This algorithm walks through a binary tree
* where each node is a piece of the number to print, and such that
* we visit left nodes first. We do the needed recursion in line.
*/
digits = 1;
output = FALSE;
n = 0;
putpoint = 0;
rightnums[0].len = 0;
leftnums[0] = z;
for (;;) {
while (n < depth) {
i = depth - n - 1;
zdiv(leftnums[n], _tenpowers_[i], &quo, &rem);
if (!ziszero(quo))
digits += (1L << i);
n++;
leftnums[n] = quo;
rightnums[n] = rem;
}
i = leftnums[n].v[0];
if (output || i || (n == 0)) {
if (!output) {
output = TRUE;
if (decimals > digits)
leadspaces -= decimals;
else
leadspaces -= digits;
while (--leadspaces >= 0)
PUTCHAR(' ');
if (neg)
PUTCHAR('-');
if (decimals) {
putpoint = (digits - decimals);
if (putpoint <= 0) {
PUTCHAR('.');
while (++putpoint <= 0)
PUTCHAR('0');
putpoint = 0;
}
}
}
i += '0';
PUTCHAR(i);
if (--putpoint == 0)
PUTCHAR('.');
}
while (rightnums[n].len == 0) {
if (n <= 0)
return;
if (leftnums[n].len)
zfree(leftnums[n]);
n--;
}
zfree(leftnums[n]);
leftnums[n] = rightnums[n];
rightnums[n].len = 0;
}
}
/*
* Read an integer value in decimal, hex, octal, or binary.
* Hex numbers are indicated by a leading "0x", binary with a leading "0b",
* and octal by a leading "0". Periods are skipped over, but any other
* extraneous character stops the scan.
*/
void
atoz(s, res)
register char *s;
ZVALUE *res;
{
ZVALUE z, ztmp, digit;
HALF digval;
BOOL minus;
long shift;
minus = FALSE;
shift = 0;
if (*s == '+')
s++;
else if (*s == '-') {
minus = TRUE;
s++;
}
if (*s == '0') { /* possibly hex, octal, or binary */
s++;
if ((*s >= '0') && (*s <= '7')) {
shift = 3;
} else if ((*s == 'x') || (*s == 'X')) {
shift = 4;
s++;
} else if ((*s == 'b') || (*s == 'B')) {
shift = 1;
s++;
}
}
digit.v = &digval;
digit.len = 1;
digit.sign = 0;
z = _zero_;
while (*s) {
digval = *s++;
if ((digval >= '0') && (digval <= '9'))
digval -= '0';
else if ((digval >= 'a') && (digval <= 'f') && shift)
digval -= ('a' - 10);
else if ((digval >= 'A') && (digval <= 'F') && shift)
digval -= ('A' - 10);
else if (digval == '.')
continue;
else
break;
if (shift)
zshift(z, shift, &ztmp);
else
zmuli(z, 10L, &ztmp);
zfree(z);
zadd(ztmp, digit, &z);
zfree(ztmp);
}
ztrim(&z);
if (minus && !ziszero(z))
z.sign = 1;
*res = z;
}
/* END CODE */