need quota.h with inode.h now
[unix-history] / usr / src / sys / ufs / ffs / ffs_balloc.c
/*
* Copyright (c) 1982, 1986, 1989 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* @(#)ffs_balloc.c 7.8 (Berkeley) %G%
*/
#include "param.h"
#include "systm.h"
#include "user.h"
#include "buf.h"
#include "proc.h"
#include "file.h"
#include "vnode.h"
#include "../ufs/quota.h"
#include "../ufs/inode.h"
#include "../ufs/fs.h"
/*
* Bmap defines the structure of file system storage
* by returning the physical block number on a device
* given the inode and the logical block number in a file.
*/
bmap(ip, bn, bnp)
register struct inode *ip;
register daddr_t bn;
daddr_t *bnp;
{
register struct fs *fs;
register daddr_t nb;
struct buf *bp;
daddr_t *bap;
int i, j, sh;
int error;
if (bn < 0)
return (EFBIG);
fs = ip->i_fs;
/*
* The first NDADDR blocks are direct blocks
*/
if (bn < NDADDR) {
nb = ip->i_db[bn];
if (nb == 0) {
*bnp = (daddr_t)-1;
return (0);
}
*bnp = fsbtodb(fs, nb);
return (0);
}
/*
* Determine the number of levels of indirection.
*/
sh = 1;
bn -= NDADDR;
for (j = NIADDR; j > 0; j--) {
sh *= NINDIR(fs);
if (bn < sh)
break;
bn -= sh;
}
if (j == 0)
return (EFBIG);
/*
* Fetch through the indirect blocks.
*/
nb = ip->i_ib[NIADDR - j];
if (nb == 0) {
*bnp = (daddr_t)-1;
return (0);
}
for (; j <= NIADDR; j++) {
if (error = bread(ip->i_devvp, fsbtodb(fs, nb),
(int)fs->fs_bsize, NOCRED, &bp)) {
brelse(bp);
return (error);
}
bap = bp->b_un.b_daddr;
sh /= NINDIR(fs);
i = (bn / sh) % NINDIR(fs);
nb = bap[i];
if (nb == 0) {
*bnp = (daddr_t)-1;
brelse(bp);
return (0);
}
brelse(bp);
}
*bnp = fsbtodb(fs, nb);
return (0);
}
/*
* Balloc defines the structure of file system storage
* by allocating the physical blocks on a device given
* the inode and the logical block number in a file.
*/
balloc(ip, bn, size, bpp, flags)
register struct inode *ip;
register daddr_t bn;
int size;
struct buf **bpp;
int flags;
{
register struct fs *fs;
register daddr_t nb;
struct buf *bp, *nbp;
struct vnode *vp = ITOV(ip);
int osize, nsize, i, j, sh, error;
daddr_t newb, lbn, *bap, pref, blkpref();
*bpp = (struct buf *)0;
if (bn < 0)
return (EFBIG);
fs = ip->i_fs;
/*
* If the next write will extend the file into a new block,
* and the file is currently composed of a fragment
* this fragment has to be extended to be a full block.
*/
nb = lblkno(fs, ip->i_size);
if (nb < NDADDR && nb < bn) {
osize = blksize(fs, ip, nb);
if (osize < fs->fs_bsize && osize > 0) {
error = realloccg(ip, nb,
blkpref(ip, nb, (int)nb, &ip->i_db[0]),
osize, (int)fs->fs_bsize, &bp);
if (error)
return (error);
ip->i_size = (nb + 1) * fs->fs_bsize;
ip->i_db[nb] = dbtofsb(fs, bp->b_blkno);
ip->i_flag |= IUPD|ICHG;
if (flags & B_SYNC)
bwrite(bp);
else
bawrite(bp);
}
}
/*
* The first NDADDR blocks are direct blocks
*/
if (bn < NDADDR) {
nb = ip->i_db[bn];
if (nb != 0 && ip->i_size >= (bn + 1) * fs->fs_bsize) {
error = bread(vp, bn, fs->fs_bsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (error);
}
*bpp = bp;
return (0);
}
if (nb != 0) {
/*
* Consider need to reallocate a fragment.
*/
osize = fragroundup(fs, blkoff(fs, ip->i_size));
nsize = fragroundup(fs, size);
if (nsize <= osize) {
error = bread(vp, bn, osize, NOCRED, &bp);
if (error) {
brelse(bp);
return (error);
}
} else {
error = realloccg(ip, bn,
blkpref(ip, bn, (int)bn, &ip->i_db[0]),
osize, nsize, &bp);
if (error)
return (error);
}
} else {
if (ip->i_size < (bn + 1) * fs->fs_bsize)
nsize = fragroundup(fs, size);
else
nsize = fs->fs_bsize;
error = alloc(ip, bn,
blkpref(ip, bn, (int)bn, &ip->i_db[0]),
nsize, &newb);
if (error)
return (error);
bp = getblk(vp, bn, nsize);
bp->b_blkno = fsbtodb(fs, newb);
if (flags & B_CLRBUF)
clrbuf(bp);
}
ip->i_db[bn] = dbtofsb(fs, bp->b_blkno);
ip->i_flag |= IUPD|ICHG;
*bpp = bp;
return (0);
}
/*
* Determine the number of levels of indirection.
*/
pref = 0;
sh = 1;
lbn = bn;
bn -= NDADDR;
for (j = NIADDR; j > 0; j--) {
sh *= NINDIR(fs);
if (bn < sh)
break;
bn -= sh;
}
if (j == 0)
return (EFBIG);
/*
* Fetch the first indirect block allocating if necessary.
*/
nb = ip->i_ib[NIADDR - j];
if (nb == 0) {
pref = blkpref(ip, lbn, 0, (daddr_t *)0);
if (error = alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb))
return (error);
nb = newb;
bp = getblk(ip->i_devvp, fsbtodb(fs, nb), fs->fs_bsize);
clrbuf(bp);
/*
* Write synchronously so that indirect blocks
* never point at garbage.
*/
if (error = bwrite(bp)) {
blkfree(ip, nb, fs->fs_bsize);
return (error);
}
ip->i_ib[NIADDR - j] = nb;
ip->i_flag |= IUPD|ICHG;
}
/*
* Fetch through the indirect blocks, allocating as necessary.
*/
for (; ; j++) {
error = bread(ip->i_devvp, fsbtodb(fs, nb),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (error);
}
bap = bp->b_un.b_daddr;
sh /= NINDIR(fs);
i = (bn / sh) % NINDIR(fs);
nb = bap[i];
if (j == NIADDR)
break;
if (nb != 0) {
brelse(bp);
continue;
}
if (pref == 0)
pref = blkpref(ip, lbn, 0, (daddr_t *)0);
if (error = alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb)) {
brelse(bp);
return (error);
}
nb = newb;
nbp = getblk(ip->i_devvp, fsbtodb(fs, nb), fs->fs_bsize);
clrbuf(nbp);
/*
* Write synchronously so that indirect blocks
* never point at garbage.
*/
if (error = bwrite(nbp)) {
blkfree(ip, nb, fs->fs_bsize);
brelse(bp);
return (error);
}
bap[i] = nb;
/*
* If required, write synchronously, otherwise use
* delayed write. If this is the first instance of
* the delayed write, reassociate the buffer with the
* file so it will be written if the file is sync'ed.
*/
if (flags & B_SYNC) {
bwrite(bp);
} else if (bp->b_flags & B_DELWRI) {
bdwrite(bp);
} else {
bdwrite(bp);
reassignbuf(bp, vp);
}
}
/*
* Get the data block, allocating if necessary.
*/
if (nb == 0) {
pref = blkpref(ip, lbn, i, &bap[0]);
if (error = alloc(ip, lbn, pref, (int)fs->fs_bsize, &newb)) {
brelse(bp);
return (error);
}
nb = newb;
nbp = getblk(vp, lbn, fs->fs_bsize);
nbp->b_blkno = fsbtodb(fs, nb);
if (flags & B_CLRBUF)
clrbuf(nbp);
bap[i] = nb;
/*
* If required, write synchronously, otherwise use
* delayed write. If this is the first instance of
* the delayed write, reassociate the buffer with the
* file so it will be written if the file is sync'ed.
*/
if (flags & B_SYNC) {
bwrite(bp);
} else if (bp->b_flags & B_DELWRI) {
bdwrite(bp);
} else {
bdwrite(bp);
reassignbuf(bp, vp);
}
*bpp = nbp;
return (0);
}
brelse(bp);
nbp = getblk(vp, lbn, fs->fs_bsize);
nbp->b_blkno = fsbtodb(fs, nb);
if ((flags & B_CLRBUF) && (nbp->b_flags & (B_DONE|B_DELWRI)) == 0) {
brelse(nbp);
error = bread(vp, lbn, (int)fs->fs_bsize, NOCRED, &nbp);
if (error) {
brelse(nbp);
return (error);
}
}
*bpp = nbp;
return (0);
}