delay deletion from internal tables when cur router deletes
[unix-history] / usr / src / sbin / routed / routed.c
#ifndef lint
static char sccsid[] = "@(#)routed.c 4.25 %G%";
#endif
/*
* Routing Table Management Daemon
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/in.h>
#include <net/if.h>
#include <errno.h>
#include <stdio.h>
#include <nlist.h>
#include <signal.h>
#include <time.h>
#include <netdb.h>
#define RIPCMDS
#include "rip.h"
#include "router.h"
#define LOOPBACKNET 0177
/* casts to keep lint happy */
#define insque(q,p) _insque((caddr_t)q,(caddr_t)p)
#define remque(q) _remque((caddr_t)q)
#define equal(a1, a2) \
(bcmp((caddr_t)(a1), (caddr_t)(a2), sizeof (struct sockaddr)) == 0)
#define min(a,b) ((a)>(b)?(b):(a))
struct nlist nl[] = {
#define N_IFNET 0
{ "_ifnet" },
0,
};
struct sockaddr_in routingaddr = { AF_INET };
struct sockaddr_in noroutingaddr = { AF_INET };
int s;
int snoroute; /* socket with no routing */
int kmem = -1;
int supplier = -1; /* process should supply updates */
int install = 1; /* if 1 call kernel */
int lookforinterfaces = 1;
int performnlist = 1;
int externalinterfaces = 0; /* # of remote and local interfaces */
int timeval = -TIMER_RATE;
int timer();
int cleanup();
#define tprintf if (trace) printf
int trace = 0;
FILE *ftrace;
char packet[MAXPACKETSIZE+1];
struct rip *msg = (struct rip *)packet;
struct in_addr inet_makeaddr();
struct interface *if_ifwithaddr(), *if_ifwithnet();
extern char *malloc(), *sys_errlist[];
extern int errno, exit();
char **argv0;
int sendmsg(), supply();
main(argc, argv)
int argc;
char *argv[];
{
int cc;
struct sockaddr from;
struct servent *sp;
argv0 = argv;
#ifndef DEBUG
if (fork())
exit(0);
for (cc = 0; cc < 10; cc++)
(void) close(cc);
(void) open("/", 0);
(void) dup2(0, 1);
(void) dup2(0, 2);
{ int t = open("/dev/tty", 2);
if (t >= 0) {
ioctl(t, TIOCNOTTY, (char *)0);
(void) close(t);
}
}
#endif
if (trace) {
ftrace = fopen("/etc/routerlog", "w");
dup2(fileno(ftrace), 1);
dup2(fileno(ftrace), 2);
}
/*
* We use two sockets. One for which outgoing
* packets are routed and for which they're not.
* The latter allows us to delete routing table
* entries in the kernel for network interfaces
* attached to our host which we believe are down
* while still polling it to see when/if it comes
* back up. With the new ipc interface we'll be
* able to specify ``don't route'' as an option
* to send, but until then we utilize a second port.
*/
sp = getservbyname("router", "udp");
if (sp == 0) {
fprintf(stderr, "routed: udp/router: unknown service\n");
exit(1);
}
routingaddr.sin_port = htons(sp->s_port);
noroutingaddr.sin_port = htons(sp->s_port + 1);
again:
s = socket(SOCK_DGRAM, 0, &routingaddr, 0);
if (s < 0) {
perror("socket");
sleep(30);
goto again;
}
again2:
snoroute = socket(SOCK_DGRAM, 0, &noroutingaddr, SO_DONTROUTE);
if (snoroute < 0) {
perror("socket");
sleep(30);
goto again2;
}
argv++, argc--;
while (argc > 0 && **argv == '-') {
if (!strcmp(*argv, "-s") == 0) {
supplier = 1;
argv++, argc--;
continue;
}
if (!strcmp(*argv, "-q") == 0) {
supplier = 0;
argv++, argc--;
continue;
}
goto usage;
}
if (argc > 0) {
usage:
fprintf(stderr, "usage: routed [ -sq ]\n");
exit(1);
}
/*
* Collect an initial view of the world by
* snooping in the kernel and the gateway kludge
* file. Then, send a request packet on all
* directly connected networks to find out what
* everyone else thinks.
*/
rtinit();
gwkludge();
ifinit();
if (supplier < 0)
supplier = 0;
msg->rip_cmd = RIPCMD_REQUEST;
msg->rip_nets[0].rip_dst.sa_family = AF_UNSPEC;
msg->rip_nets[0].rip_metric = HOPCNT_INFINITY;
toall(sendmsg);
sigset(SIGALRM, timer);
timer();
for (;;) {
cc = receive(s, &from, packet, sizeof (packet));
if (cc <= 0) {
if (cc < 0 && errno != EINTR)
perror("receive");
continue;
}
sighold(SIGALRM);
rip_input(&from, cc);
sigrelse(SIGALRM);
}
}
rtinit()
{
register struct rthash *rh;
for (rh = nethash; rh < &nethash[ROUTEHASHSIZ]; rh++)
rh->rt_forw = rh->rt_back = (struct rt_entry *)rh;
for (rh = hosthash; rh < &hosthash[ROUTEHASHSIZ]; rh++)
rh->rt_forw = rh->rt_back = (struct rt_entry *)rh;
}
struct interface *ifnet;
/*
* Probe the kernel through /dev/kmem to find the network
* interfaces which have configured themselves. If the
* interface is present but not yet up (for example an
* ARPANET IMP), set the lookforinterfaces flag so we'll
* come back later and look again.
*/
ifinit()
{
struct interface *ifp;
struct ifnet ifs, *next;
if (performnlist) {
nlist("/vmunix", nl);
if (nl[N_IFNET].n_value == 0) {
printf("ifnet: not in namelist\n");
goto bad;
}
performnlist = 0;
}
if (kmem < 0) {
kmem = open("/dev/kmem", 0);
if (kmem < 0) {
perror("/dev/kmem");
goto bad;
}
}
if (lseek(kmem, (long)nl[N_IFNET].n_value, 0) == -1 ||
read(kmem, (char *)&next, sizeof (next)) != sizeof (next)) {
printf("ifnet: error reading kmem\n");
goto bad;
}
lookforinterfaces = 0;
while (next) {
if (lseek(kmem, (long)next, 0) == -1 ||
read(kmem, (char *)&ifs, sizeof (ifs)) != sizeof (ifs)) {
perror("read");
goto bad;
}
next = ifs.if_next;
if ((ifs.if_flags & IFF_UP) == 0) {
lookforinterfaces = 1;
continue;
}
/* already known to us? */
if (if_ifwithaddr(&ifs.if_addr))
continue;
/* argh, this'll have to change sometime */
if (ifs.if_addr.sa_family != AF_INET)
continue;
/* no one cares about software loopback interfaces */
if (ifs.if_net == LOOPBACKNET)
continue;
ifp = (struct interface *)malloc(sizeof (struct interface));
if (ifp == 0) {
printf("routed: out of memory\n");
break;
}
/*
* Count the # of directly connected networks
* and point to point links which aren't looped
* back to ourself. This is used below to
* decide if we should be a routing ``supplier''.
*/
if ((ifs.if_flags & IFF_POINTOPOINT) == 0 ||
if_ifwithaddr(&ifs.if_dstaddr) == 0)
externalinterfaces++;
ifp->int_addr = ifs.if_addr;
ifp->int_flags = ifs.if_flags | IFF_INTERFACE;
/* this works because broadaddr overlaps dstaddr */
ifp->int_broadaddr = ifs.if_broadaddr;
ifp->int_net = ifs.if_net;
ifp->int_metric = 0;
ifp->int_next = ifnet;
ifnet = ifp;
addrouteforif(ifp);
}
if (externalinterfaces > 1 && supplier < 0)
supplier = 1;
return;
bad:
sleep(60);
close(kmem), close(s), close(snoroute);
execv("/etc/routed", argv0);
_exit(0177);
}
addrouteforif(ifp)
struct interface *ifp;
{
struct sockaddr_in net;
struct sockaddr *dst;
int state, metric;
struct rt_entry *rt;
if (ifp->int_flags & IFF_POINTOPOINT)
dst = &ifp->int_dstaddr;
else {
bzero((char *)&net, sizeof (net));
net.sin_family = AF_INET;
net.sin_addr = inet_makeaddr(ifp->int_net, INADDR_ANY);
dst = (struct sockaddr *)&net;
}
rt = rtlookup(dst);
rtadd(dst, &ifp->int_addr, ifp->int_metric,
ifp->int_flags & (IFF_INTERFACE|IFF_PASSIVE|IFF_REMOTE));
if (rt)
rtdelete(rt);
}
/*
* As a concession to the ARPANET we read a list of gateways
* from /etc/gateways and add them to our tables. This file
* exists at each ARPANET gateway and indicates a set of ``remote''
* gateways (i.e. a gateway which we can't immediately determine
* if it's present or not as we can do for those directly connected
* at the hardware level). If a gateway is marked ``passive''
* in the file, then we assume it doesn't have a routing process
* of our design and simply assume it's always present. Those
* not marked passive are treated as if they were directly
* connected -- they're added into the interface list so we'll
* send them routing updates.
*/
gwkludge()
{
struct sockaddr_in dst, gate;
FILE *fp;
char *type, *dname, *gname, *qual, buf[BUFSIZ];
struct interface *ifp;
int metric;
fp = fopen("/etc/gateways", "r");
if (fp == NULL)
return;
qual = buf;
dname = buf + 64;
gname = buf + ((BUFSIZ - 64) / 3);
type = buf + (((BUFSIZ - 64) * 2) / 3);
bzero((char *)&dst, sizeof (dst));
bzero((char *)&gate, sizeof (gate));
dst.sin_family = gate.sin_family = AF_INET;
/* format: {net | host} XX gateway XX metric DD [passive]\n */
#define readentry(fp) \
fscanf((fp), "%s %s gateway %s metric %d %s\n", \
type, dname, gname, &metric, qual)
for (;;) {
struct hostent *host;
struct netent *net;
if (readentry(fp) == EOF)
break;
if (strcmp(type, "net") == 0) {
net = getnetbyname(dname);
if (net == 0 || net->n_addrtype != AF_INET)
continue;
dst.sin_addr = inet_makeaddr(net->n_net, INADDR_ANY);
} else if (strcmp(type, "host") == 0) {
host = gethostbyname(dname);
if (host == 0)
continue;
bcopy(host->h_addr, &dst.sin_addr, host->h_length);
} else
continue;
host = gethostbyname(gname);
if (host == 0)
continue;
bcopy(host->h_addr, &gate.sin_addr, host->h_length);
ifp = (struct interface *)malloc(sizeof (*ifp));
bzero((char *)ifp, sizeof (*ifp));
ifp->int_flags = IFF_REMOTE;
/* can't identify broadcast capability */
ifp->int_net = inet_netof(dst.sin_addr);
if (strcmp(type, "host") == 0) {
ifp->int_flags |= IFF_POINTOPOINT;
ifp->int_dstaddr = *((struct sockaddr *)&dst);
}
if (strcmp(qual, "passive") == 0)
ifp->int_flags |= IFF_PASSIVE;
else
/* assume no duplicate entries */
externalinterfaces++;
ifp->int_addr = *((struct sockaddr *)&gate);
ifp->int_metric = metric;
ifp->int_next = ifnet;
ifnet = ifp;
addrouteforif(ifp);
}
fclose(fp);
}
/*
* Timer routine. Performs routing information supply
* duties and manages timers on routing table entries.
*/
timer()
{
register struct rthash *rh;
register struct rt_entry *rt;
struct rthash *base = hosthash;
int doinghost = 1, timetobroadcast;
timeval += TIMER_RATE;
if (lookforinterfaces && (timeval % CHECK_INTERVAL) == 0)
ifinit();
timetobroadcast = supplier && (timeval % SUPPLY_INTERVAL) == 0;
tprintf(">>> time %d >>>\n", timeval);
again:
for (rh = base; rh < &base[ROUTEHASHSIZ]; rh++) {
rt = rh->rt_forw;
for (; rt != (struct rt_entry *)rh; rt = rt->rt_forw) {
/*
* We don't advance time on a routing entry for
* a passive gateway or that for our only interface.
* The latter is excused because we don't act as
* a routing information supplier and hence would
* time it out. This is fair as if it's down
* we're cut off from the world anyway and it's
* not likely we'll grow any new hardware in
* the mean time.
*/
if (!(rt->rt_state & RTS_PASSIVE) &&
(supplier || !(rt->rt_state & RTS_INTERFACE)))
rt->rt_timer += TIMER_RATE;
if (rt->rt_timer >= EXPIRE_TIME)
rt->rt_metric = HOPCNT_INFINITY;
log("", rt);
if (rt->rt_timer >= GARBAGE_TIME) {
rt = rt->rt_back;
rtdelete(rt->rt_forw);
continue;
}
if (rt->rt_state & RTS_CHANGED) {
rt->rt_state &= ~RTS_CHANGED;
/* don't send extraneous packets */
if (!supplier || timetobroadcast)
continue;
log("broadcast", rt);
msg->rip_cmd = RIPCMD_RESPONSE;
msg->rip_nets[0].rip_dst = rt->rt_dst;
msg->rip_nets[0].rip_metric =
min(rt->rt_metric+1, HOPCNT_INFINITY);
toall(sendmsg);
}
}
}
if (doinghost) {
doinghost = 0;
base = nethash;
goto again;
}
if (timetobroadcast)
toall(supply);
tprintf("<<< time %d <<<\n", timeval);
alarm(TIMER_RATE);
}
toall(f)
int (*f)();
{
register struct interface *ifp;
register struct sockaddr *dst;
for (ifp = ifnet; ifp; ifp = ifp->int_next) {
if (ifp->int_flags & IFF_PASSIVE)
continue;
dst = ifp->int_flags & IFF_BROADCAST ? &ifp->int_broadaddr :
ifp->int_flags & IFF_POINTOPOINT ? &ifp->int_dstaddr :
&ifp->int_addr;
(*f)(dst, ifp->int_flags & IFF_INTERFACE);
}
}
/*ARGSUSED*/
sendmsg(dst, dontroute)
struct sockaddr *dst;
int dontroute;
{
(*afswitch[dst->sa_family].af_output)(s, dst, sizeof (struct rip));
}
/*
* Supply dst with the contents of the routing tables.
* If this won't fit in one packet, chop it up into several.
*/
supply(dst, dontroute)
struct sockaddr *dst;
int dontroute;
{
register struct rt_entry *rt;
struct netinfo *n = msg->rip_nets;
register struct rthash *rh;
struct rthash *base = hosthash;
int doinghost = 1, size;
int (*output)() = afswitch[dst->sa_family].af_output;
int sto = dontroute ? snoroute : s;
msg->rip_cmd = RIPCMD_RESPONSE;
again:
for (rh = base; rh < &base[ROUTEHASHSIZ]; rh++)
for (rt = rh->rt_forw; rt != (struct rt_entry *)rh; rt = rt->rt_forw) {
size = (char *)n - packet;
if (size > MAXPACKETSIZE - sizeof (struct netinfo)) {
(*output)(sto, dst, size);
n = msg->rip_nets;
}
n->rip_dst = rt->rt_dst;
n->rip_metric = min(rt->rt_metric + 1, HOPCNT_INFINITY);
n++;
}
if (doinghost) {
doinghost = 0;
base = nethash;
goto again;
}
if (n != msg->rip_nets)
(*output)(sto, dst, (char *)n - packet);
}
/*
* Handle an incoming routing packet.
*/
rip_input(from, size)
struct sockaddr *from;
int size;
{
struct rt_entry *rt;
struct netinfo *n;
struct interface *ifp;
time_t t;
int newsize;
struct afswitch *afp;
if (trace) {
if (msg->rip_cmd < RIPCMD_MAX)
printf("%s from %x\n", ripcmds[msg->rip_cmd],
((struct sockaddr_in *)from)->sin_addr);
else
printf("%x from %x\n", msg->rip_cmd,
((struct sockaddr_in *)from)->sin_addr);
}
if (from->sa_family >= AF_MAX)
return;
afp = &afswitch[from->sa_family];
switch (msg->rip_cmd) {
case RIPCMD_REQUEST:
newsize = 0;
size -= 4 * sizeof (char);
n = msg->rip_nets;
while (size > 0) {
if (size < sizeof (struct netinfo))
break;
size -= sizeof (struct netinfo);
/*
* A single entry with sa_family == AF_UNSPEC and
* metric ``infinity'' means ``all routes''.
*/
if (n->rip_dst.sa_family == AF_UNSPEC &&
n->rip_metric == HOPCNT_INFINITY && size == 0) {
supply(from, 0);
return;
}
rt = rtlookup(&n->rip_dst);
n->rip_metric = rt == 0 ? HOPCNT_INFINITY :
min(rt->rt_metric+1, HOPCNT_INFINITY);
n++, newsize += sizeof (struct netinfo);
}
if (newsize > 0) {
msg->rip_cmd = RIPCMD_RESPONSE;
newsize += sizeof (int);
(*afp->af_output)(s, from, newsize);
}
return;
case RIPCMD_TRACEON:
if ((*afp->af_portcheck)(from) == 0)
return;
if (trace)
return;
packet[size] = '\0';
ftrace = fopen(msg->rip_tracefile, "a");
if (ftrace == NULL)
return;
(void) dup2(fileno(ftrace), 1);
(void) dup2(fileno(ftrace), 2);
trace = 1;
t = time(0);
printf("*** Tracing turned on at %.24s ***\n", ctime(&t));
return;
case RIPCMD_TRACEOFF:
/* verify message came from a priviledged port */
if ((*afp->af_portcheck)(from) == 0)
return;
if (!trace)
return;
t = time(0);
printf("*** Tracing turned off at %.24s ***\n", ctime(&t));
fflush(stdout), fflush(stderr);
if (ftrace)
fclose(ftrace);
(void) close(1), (void) close(2);
trace = 0;
return;
case RIPCMD_RESPONSE:
/* verify message came from a router */
if ((*afp->af_portmatch)(from) == 0)
return;
(*afp->af_canon)(from);
/* are we talking to ourselves? */
ifp = if_ifwithaddr(from);
if (ifp) {
rt = rtfind(from);
if (rt == 0)
addrouteforif(ifp);
else
rt->rt_timer = 0;
return;
}
size -= 4 * sizeof (char);
n = msg->rip_nets;
for (; size > 0; size -= sizeof (struct netinfo), n++) {
if (size < sizeof (struct netinfo))
break;
if (n->rip_metric >= HOPCNT_INFINITY)
continue;
tprintf("dst %x hc %d...",
((struct sockaddr_in *)&n->rip_dst)->sin_addr,
n->rip_metric);
rt = rtlookup(&n->rip_dst);
if (rt == 0) {
rtadd(&n->rip_dst, from, n->rip_metric, 0);
continue;
}
tprintf("ours: gate %x hc %d timer %d\n",
((struct sockaddr_in *)&rt->rt_router)->sin_addr,
rt->rt_metric, rt->rt_timer);
/*
* Update if from gateway, shorter, or getting
* stale and equivalent.
*/
if (equal(from, &rt->rt_router) ||
n->rip_metric < rt->rt_metric ||
(rt->rt_timer > (EXPIRE_TIME/2) &&
rt->rt_metric == n->rip_metric)) {
rtchange(rt, from, n->rip_metric);
rt->rt_timer = 0;
}
}
return;
}
tprintf("bad packet, cmd=%x\n", msg->rip_cmd);
}
/*
* Lookup dst in the tables for an exact match.
*/
struct rt_entry *
rtlookup(dst)
struct sockaddr *dst;
{
register struct rt_entry *rt;
register struct rthash *rh;
register int hash;
struct afhash h;
int doinghost = 1;
if (dst->sa_family >= AF_MAX)
return (0);
(*afswitch[dst->sa_family].af_hash)(dst, &h);
hash = h.afh_hosthash;
rh = &hosthash[hash % ROUTEHASHSIZ];
again:
for (rt = rh->rt_forw; rt != (struct rt_entry *)rh; rt = rt->rt_forw) {
if (rt->rt_hash != hash)
continue;
if (equal(&rt->rt_dst, dst))
return (rt);
}
if (doinghost) {
doinghost = 0;
hash = h.afh_nethash;
rh = &nethash[hash % ROUTEHASHSIZ];
goto again;
}
return (0);
}
/*
* Find a route to dst as the kernel would.
*/
struct rt_entry *
rtfind(dst)
struct sockaddr *dst;
{
register struct rt_entry *rt;
register struct rthash *rh;
register int hash;
struct afhash h;
int af = dst->sa_family;
int doinghost = 1, (*match)();
if (af >= AF_MAX)
return (0);
(*afswitch[af].af_hash)(dst, &h);
hash = h.afh_hosthash;
rh = &hosthash[hash % ROUTEHASHSIZ];
again:
for (rt = rh->rt_forw; rt != (struct rt_entry *)rh; rt = rt->rt_forw) {
if (rt->rt_hash != hash)
continue;
if (doinghost) {
if (equal(&rt->rt_dst, dst))
return (rt);
} else {
if (rt->rt_dst.sa_family == af &&
(*match)(&rt->rt_dst, dst))
return (rt);
}
}
if (doinghost) {
doinghost = 0;
hash = h.afh_nethash;
rh = &nethash[hash % ROUTEHASHSIZ];
match = afswitch[af].af_netmatch;
goto again;
}
return (0);
}
rtadd(dst, gate, metric, state)
struct sockaddr *dst, *gate;
int metric, state;
{
struct afhash h;
register struct rt_entry *rt;
struct rthash *rh;
int af = dst->sa_family, flags, hash;
if (af >= AF_MAX)
return;
(*afswitch[af].af_hash)(dst, &h);
flags = (*afswitch[af].af_checkhost)(dst) ? RTF_HOST : 0;
if (flags & RTF_HOST) {
hash = h.afh_hosthash;
rh = &hosthash[hash % ROUTEHASHSIZ];
} else {
hash = h.afh_nethash;
rh = &nethash[hash % ROUTEHASHSIZ];
}
rt = (struct rt_entry *)malloc(sizeof (*rt));
if (rt == 0)
return;
rt->rt_hash = hash;
rt->rt_dst = *dst;
rt->rt_router = *gate;
rt->rt_metric = metric;
rt->rt_timer = 0;
rt->rt_flags = RTF_UP | flags;
rt->rt_state = state | RTS_CHANGED;
rt->rt_ifp = if_ifwithnet(&rt->rt_router);
if (metric)
rt->rt_flags |= RTF_GATEWAY;
insque(rt, rh);
log("add", rt);
if (install && ioctl(s, SIOCADDRT, (char *)&rt->rt_rt) < 0)
tprintf("SIOCADDRT: %s\n", sys_errlist[errno]);
}
rtchange(rt, gate, metric)
struct rt_entry *rt;
struct sockaddr *gate;
short metric;
{
int doioctl = 0, metricchanged = 0;
struct rtentry oldroute;
if (!equal(&rt->rt_router, gate))
doioctl++;
if (metric != rt->rt_metric) {
metricchanged++;
rt->rt_metric = metric;
}
if (doioctl || metricchanged) {
log("change", rt);
rt->rt_state |= RTS_CHANGED;
}
if (doioctl) {
oldroute = rt->rt_rt;
rt->rt_router = *gate;
if (install) {
if (ioctl(s, SIOCADDRT, (char *)&rt->rt_rt) < 0)
tprintf("SIOCADDRT: %s\n", sys_errlist[errno]);
if (ioctl(s, SIOCDELRT, (char *)&oldroute) < 0)
tprintf("SIOCDELRT: %s\n", sys_errlist[errno]);
}
}
}
rtdelete(rt)
struct rt_entry *rt;
{
log("delete", rt);
if (install && ioctl(s, SIOCDELRT, (char *)&rt->rt_rt))
tprintf("SIOCDELRT: %s\n", sys_errlist[errno]);
remque(rt);
free((char *)rt);
}
log(operation, rt)
char *operation;
struct rt_entry *rt;
{
struct sockaddr_in *dst, *gate;
static struct bits {
int t_bits;
char *t_name;
} flagbits[] = {
{ RTF_UP, "UP" },
{ RTF_GATEWAY, "GATEWAY" },
{ RTF_HOST, "HOST" },
{ 0 }
}, statebits[] = {
{ RTS_PASSIVE, "PASSIVE" },
{ RTS_REMOTE, "REMOTE" },
{ RTS_INTERFACE,"INTERFACE" },
{ RTS_CHANGED, "CHANGED" },
{ 0 }
};
register struct bits *p;
register int first;
char *cp;
if (trace == 0)
return;
printf("%s ", operation);
dst = (struct sockaddr_in *)&rt->rt_dst;
gate = (struct sockaddr_in *)&rt->rt_router;
printf("dst %x, router %x, metric %d, flags", dst->sin_addr,
gate->sin_addr, rt->rt_metric);
cp = " %s";
for (first = 1, p = flagbits; p->t_bits > 0; p++) {
if ((rt->rt_flags & p->t_bits) == 0)
continue;
printf(cp, p->t_name);
if (first) {
cp = "|%s";
first = 0;
}
}
printf(" state");
cp = " %s";
for (first = 1, p = statebits; p->t_bits > 0; p++) {
if ((rt->rt_state & p->t_bits) == 0)
continue;
printf(cp, p->t_name);
if (first) {
cp = "|%s";
first = 0;
}
}
putchar('\n');
}
struct interface *
if_ifwithaddr(addr)
struct sockaddr *addr;
{
register struct interface *ifp;
#define same(a1, a2) \
(bcmp((caddr_t)((a1)->sa_data), (caddr_t)((a2)->sa_data), 14) == 0)
for (ifp = ifnet; ifp; ifp = ifp->int_next) {
if (ifp->int_flags & IFF_REMOTE)
continue;
if (ifp->int_addr.sa_family != addr->sa_family)
continue;
if (same(&ifp->int_addr, addr))
break;
if ((ifp->int_flags & IFF_BROADCAST) &&
same(&ifp->int_broadaddr, addr))
break;
}
return (ifp);
#undef same
}
struct interface *
if_ifwithnet(addr)
register struct sockaddr *addr;
{
register struct interface *ifp;
register int af = addr->sa_family;
register int (*netmatch)();
if (af >= AF_MAX)
return (0);
netmatch = afswitch[af].af_netmatch;
for (ifp = ifnet; ifp; ifp = ifp->int_next) {
if (ifp->int_flags & IFF_REMOTE)
continue;
if (af != ifp->int_addr.sa_family)
continue;
if ((*netmatch)(addr, &ifp->int_addr))
break;
}
return (ifp);
}