386BSD 0.0 development
authorWilliam F. Jolitz <wjolitz@soda.berkeley.edu>
Mon, 28 Jan 1991 16:37:34 +0000 (08:37 -0800)
committerWilliam F. Jolitz <wjolitz@soda.berkeley.edu>
Mon, 28 Jan 1991 16:37:34 +0000 (08:37 -0800)
Work on file usr/src/usr.bin/gas/expr.c

Co-Authored-By: Lynne Greer Jolitz <ljolitz@cardio.ucsf.edu>
Synthesized-from: 386BSD-0.0/src

usr/src/usr.bin/gas/expr.c [new file with mode: 0644]

diff --git a/usr/src/usr.bin/gas/expr.c b/usr/src/usr.bin/gas/expr.c
new file mode 100644 (file)
index 0000000..f3a377d
--- /dev/null
@@ -0,0 +1,980 @@
+/* expr.c -operands, expressions-
+   Copyright (C) 1987 Free Software Foundation, Inc.
+
+This file is part of GAS, the GNU Assembler.
+
+GAS is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 1, or (at your option)
+any later version.
+
+GAS is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GAS; see the file COPYING.  If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
+
+/*
+ * This is really a branch office of as-read.c. I split it out to clearly
+ * distinguish the world of expressions from the world of statements.
+ * (It also gives smaller files to re-compile.)
+ * Here, "operand"s are of expressions, not instructions.
+ */
+
+#include <ctype.h>
+#include "as.h"
+#include "flonum.h"
+#include "read.h"
+#include "struc-symbol.h"
+#include "expr.h"
+#include "obstack.h"
+#include "symbols.h"
+
+static void clean_up_expression();     /* Internal. */
+extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */
+extern const char FLT_CHARS[];
+
+#ifdef SUN_ASM_SYNTAX
+extern int local_label_defined[];
+#endif
+
+/*
+ * Build any floating-point literal here.
+ * Also build any bignum literal here.
+ */
+
+/* LITTLENUM_TYPE      generic_buffer [6];     /* JF this is a hack */
+/* Seems atof_machine can backscan through generic_bignum and hit whatever
+   happens to be loaded before it in memory.  And its way too complicated
+   for me to fix right.  Thus a hack.  JF:  Just make generic_bignum bigger,
+   and never write into the early words, thus they'll always be zero.
+   I hate Dean's floating-point code.  Bleh.
+ */
+LITTLENUM_TYPE generic_bignum [SIZE_OF_LARGE_NUMBER+6];
+FLONUM_TYPE    generic_floating_point_number =
+{
+  & generic_bignum [6],                /* low (JF: Was 0) */
+  & generic_bignum [SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */
+  0,                           /* leader */
+  0,                           /* exponent */
+  0                            /* sign */
+};
+/* If nonzero, we've been asked to assemble nan, +inf or -inf */
+int generic_floating_point_magic;
+\f
+/*
+ * Summary of operand().
+ *
+ * in: Input_line_pointer points to 1st char of operand, which may
+ *     be a space.
+ *
+ * out:        A expressionS. X_seg determines how to understand the rest of the
+ *     expressionS.
+ *     The operand may have been empty: in this case X_seg == SEG_NONE.
+ *     Input_line_pointer -> (next non-blank) char after operand.
+ *
+ */
+\f
+static segT
+operand (expressionP)
+     register expressionS *    expressionP;
+{
+  register char                c;
+  register char *name; /* points to name of symbol */
+  register struct symbol *     symbolP; /* Points to symbol */
+
+  extern  char hex_value[];    /* In hex_value.c */
+  char *local_label_name();
+
+  SKIP_WHITESPACE();           /* Leading whitespace is part of operand. */
+  c = * input_line_pointer ++; /* Input_line_pointer -> past char in c. */
+  if (isdigit(c))
+    {
+      register valueT  number; /* offset or (absolute) value */
+      register short int digit;        /* value of next digit in current radix */
+                               /* invented for humans only, hope */
+                               /* optimising compiler flushes it! */
+      register short int radix;        /* 8, 10 or 16 */
+                               /* 0 means we saw start of a floating- */
+                               /* point constant. */
+      register short int maxdig;/* Highest permitted digit value. */
+      register int     too_many_digits; /* If we see >= this number of */
+                               /* digits, assume it is a bignum. */
+      register char *  digit_2; /* -> 2nd digit of number. */
+               int     small;  /* TRUE if fits in 32 bits. */
+
+      if (c=='0')
+       {                       /* non-decimal radix */
+         if ((c = * input_line_pointer ++)=='x' || c=='X')
+           {
+             c = * input_line_pointer ++; /* read past "0x" or "0X" */
+             maxdig = radix = 16;
+             too_many_digits = 9;
+           }
+         else
+           {
+             /* If it says '0f' and the line ends or it DOESN'T look like
+                a floating point #, its a local label ref.  DTRT */
+             if(c=='f' && (! *input_line_pointer ||
+                           (!index("+-.0123456789",*input_line_pointer) &&
+                           !index(EXP_CHARS,*input_line_pointer))))
+               {
+                 maxdig = radix = 10;
+                 too_many_digits = 11;
+                 c='0';
+                 input_line_pointer-=2;
+               }
+             else if (c && index (FLT_CHARS,c))
+               {
+                 radix = 0;    /* Start of floating-point constant. */
+                               /* input_line_pointer -> 1st char of number. */
+                 expressionP -> X_add_number =  - (isupper(c) ? tolower(c) : c);
+               }
+             else
+               {               /* By elimination, assume octal radix. */
+                 radix = 8;
+                 maxdig = 10;  /* Un*x sux. Compatibility. */
+                 too_many_digits = 11;
+               }
+           }
+         /* c == char after "0" or "0x" or "0X" or "0e" etc.*/
+       }
+      else
+       {
+         maxdig = radix = 10;
+         too_many_digits = 11;
+       }
+      if (radix)
+       {                       /* Fixed-point integer constant. */
+                               /* May be bignum, or may fit in 32 bits. */
+/*
+ * Most numbers fit into 32 bits, and we want this case to be fast.
+ * So we pretend it will fit into 32 bits. If, after making up a 32
+ * bit number, we realise that we have scanned more digits than
+ * comfortably fit into 32 bits, we re-scan the digits coding
+ * them into a bignum. For decimal and octal numbers we are conservative: some
+ * numbers may be assumed bignums when in fact they do fit into 32 bits.
+ * Numbers of any radix can have excess leading zeros: we strive
+ * to recognise this and cast them back into 32 bits.
+ * We must check that the bignum really is more than 32
+ * bits, and change it back to a 32-bit number if it fits.
+ * The number we are looking for is expected to be positive, but
+ * if it fits into 32 bits as an unsigned number, we let it be a 32-bit
+ * number. The cavalier approach is for speed in ordinary cases.
+ */
+         digit_2 = input_line_pointer;
+         for (number=0;  (digit=hex_value[c])<maxdig;  c = * input_line_pointer ++)
+           {
+             number = number * radix + digit;
+           }
+         /* C contains character after number. */
+         /* Input_line_pointer -> char after C. */
+         small = input_line_pointer - digit_2 < too_many_digits;
+         if ( ! small)
+           {
+             /*
+              * We saw a lot of digits. Manufacture a bignum the hard way.
+              */
+             LITTLENUM_TYPE *  leader; /* -> high order littlenum of the bignum. */
+             LITTLENUM_TYPE *  pointer; /* -> littlenum we are frobbing now. */
+             long int          carry;
+
+             leader = generic_bignum;
+             generic_bignum [0] = 0;
+             generic_bignum [1] = 0;
+                               /* We could just use digit_2, but lets be mnemonic. */
+             input_line_pointer = -- digit_2; /* -> 1st digit. */
+             c = *input_line_pointer ++;
+             for (;   (carry = hex_value [c]) < maxdig;   c = * input_line_pointer ++)
+               {
+                 for (pointer = generic_bignum;
+                      pointer <= leader;
+                      pointer ++)
+                   {
+                     long int  work;
+
+                     work = carry + radix * * pointer;
+                     * pointer = work & LITTLENUM_MASK;
+                     carry = work >> LITTLENUM_NUMBER_OF_BITS;
+                   }
+                 if (carry)
+                   {
+                     if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
+                       {       /* Room to grow a longer bignum. */
+                         * ++ leader = carry;
+                       }
+                   }
+               }
+             /* Again, C is char after number, */
+             /* input_line_pointer -> after C. */
+             know( BITS_PER_INT == 32 );
+             know( LITTLENUM_NUMBER_OF_BITS == 16 );
+             /* Hence the constant "2" in the next line. */
+             if (leader < generic_bignum + 2)
+               {               /* Will fit into 32 bits. */
+                 number =
+                   ( (generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS )
+                   | (generic_bignum [0] & LITTLENUM_MASK);
+                 small = TRUE;
+               }
+             else
+               {
+                 number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */
+               }
+           }
+         if (small)
+           {
+             /*
+              * Here with number, in correct radix. c is the next char.
+              * Note that unlike Un*x, we allow "011f" "0x9f" to
+              * both mean the same as the (conventional) "9f". This is simply easier
+              * than checking for strict canonical form. Syntax sux!
+              */
+             if (number<10)
+               {
+#ifdef SUN_ASM_SYNTAX
+                 if (c=='b' || (c=='$' && local_label_defined[number]))
+#else
+                 if (c=='b')
+#endif
+                   {
+                     /*
+                      * Backward ref to local label.
+                      * Because it is backward, expect it to be DEFINED.
+                      */
+                     /*
+                      * Construct a local label.
+                      */
+                     name = local_label_name ((int)number, 0);
+                     if ( (symbolP = symbol_table_lookup(name)) /* seen before */
+                         && (symbolP -> sy_type & N_TYPE) != N_UNDF /* symbol is defined: OK */
+                         )
+                       {               /* Expected path: symbol defined. */
+                         /* Local labels are never absolute. Don't waste time checking absoluteness. */
+                         know(   (symbolP -> sy_type & N_TYPE) == N_DATA
+                              || (symbolP -> sy_type & N_TYPE) == N_TEXT );
+                         expressionP -> X_add_symbol = symbolP;
+                         expressionP -> X_add_number = 0;
+                         expressionP -> X_seg        = N_TYPE_seg [symbolP -> sy_type];
+                       }
+                     else
+                       {               /* Either not seen or not defined. */
+                         as_warn( "Backw. ref to unknown label \"%d:\", 0 assumed.",
+                                 number
+                                 );
+                         expressionP -> X_add_number = 0;
+                         expressionP -> X_seg        = SEG_ABSOLUTE;
+                       }
+                   }
+                 else
+                   {
+#ifdef SUN_ASM_SYNTAX
+                     if (c=='f' || (c=='$' && !local_label_defined[number]))
+#else
+                     if (c=='f')
+#endif
+                       {
+                         /*
+                          * Forward reference. Expect symbol to be undefined or
+                          * unknown. Undefined: seen it before. Unknown: never seen
+                          * it in this pass.
+                          * Construct a local label name, then an undefined symbol.
+                          * Don't create a XSEG frag for it: caller may do that.
+                          * Just return it as never seen before.
+                          */
+                         name = local_label_name ((int)number, 1);
+                         if ( symbolP = symbol_table_lookup( name ))
+                           {
+                             /* We have no need to check symbol properties. */
+                             know(   (symbolP -> sy_type & N_TYPE) == N_UNDF
+                                  || (symbolP -> sy_type & N_TYPE) == N_DATA
+                                  || (symbolP -> sy_type & N_TYPE) == N_TEXT);
+                           }
+                         else
+                           {
+                             symbolP = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag);
+                             symbol_table_insert (symbolP);
+                           }
+                         expressionP -> X_add_symbol      = symbolP;
+                         expressionP -> X_seg             = SEG_UNKNOWN;
+                         expressionP -> X_subtract_symbol = NULL;
+                         expressionP -> X_add_number      = 0;
+                       }
+                     else
+                       {               /* Really a number, not a local label. */
+                         expressionP -> X_add_number = number;
+                         expressionP -> X_seg        = SEG_ABSOLUTE;
+                         input_line_pointer --; /* Restore following character. */
+                       }               /* if (c=='f') */
+                   }                   /* if (c=='b') */
+               }
+             else
+               {                       /* Really a number. */
+                 expressionP -> X_add_number = number;
+                 expressionP -> X_seg        = SEG_ABSOLUTE;
+                 input_line_pointer --; /* Restore following character. */
+               }                       /* if (number<10) */
+           }
+         else
+           {
+             expressionP -> X_add_number = number;
+             expressionP -> X_seg = SEG_BIG;
+             input_line_pointer --; /* -> char following number. */
+           }                   /* if (small) */
+       }                       /* (If integer constant) */
+      else
+       {                       /* input_line_pointer -> */
+                               /* floating-point constant. */
+         int error_code;
+
+         error_code = atof_generic
+           (& input_line_pointer, ".", EXP_CHARS,
+            & generic_floating_point_number);
+
+         if (error_code)
+           {
+             if (error_code == ERROR_EXPONENT_OVERFLOW)
+               {
+                 as_warn( "Bad floating-point constant: exponent overflow, probably assembling junk" );
+               }
+             else
+               {             
+                 as_warn( "Bad floating-point constant: unknown error code=%d.", error_code);
+               }
+           }
+         expressionP -> X_seg = SEG_BIG;
+                               /* input_line_pointer -> just after constant, */
+                               /* which may point to whitespace. */
+         know( expressionP -> X_add_number < 0 ); /* < 0 means "floating point". */
+       }                       /* if (not floating-point constant) */
+    }
+  else if(c=='.' && !is_part_of_name(*input_line_pointer)) {
+    extern struct obstack frags;
+
+    /*
+       JF:  '.' is pseudo symbol with value of current location in current
+       segment. . .
+     */
+    symbolP = symbol_new("L0\001",
+                        (unsigned char)(seg_N_TYPE[(int)now_seg]),
+                        0,
+                        0,
+                        (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),
+                        frag_now);
+    expressionP->X_add_number=0;
+    expressionP->X_add_symbol=symbolP;
+    expressionP->X_seg = now_seg;
+
+  } else if ( is_name_beginner(c) ) /* here if did not begin with a digit */
+    {
+      /*
+       * Identifier begins here.
+       * This is kludged for speed, so code is repeated.
+       */
+      name =  -- input_line_pointer;
+      c = get_symbol_end();
+      symbolP = symbol_table_lookup(name);
+      if (symbolP)
+           {
+          /*
+           * If we have an absolute symbol, then we know it's value now.
+           */
+          register segT        seg;
+
+          seg = N_TYPE_seg [(int) symbolP -> sy_type & N_TYPE];
+          if ((expressionP -> X_seg = seg) == SEG_ABSOLUTE )
+           {
+             expressionP -> X_add_number = symbolP -> sy_value;
+           }
+         else
+           {
+             expressionP -> X_add_number  = 0;
+             expressionP -> X_add_symbol  = symbolP;
+           }
+       }
+      else
+       {
+         expressionP -> X_add_symbol
+               = symbolP
+               = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag);
+
+         expressionP -> X_add_number  = 0;
+         expressionP -> X_seg         = SEG_UNKNOWN;
+         symbol_table_insert (symbolP);
+       }
+      * input_line_pointer = c;
+      expressionP -> X_subtract_symbol = NULL;
+    }
+  else if (c=='(')/* didn't begin with digit & not a name */
+    {
+      (void)expression( expressionP );
+      /* Expression() will pass trailing whitespace */
+      if ( * input_line_pointer ++ != ')' )
+       {
+         as_warn( "Missing ')' assumed");
+         input_line_pointer --;
+       }
+      /* here with input_line_pointer -> char after "(...)" */
+    }
+  else if ( c=='~' || c=='-' )
+    {          /* unary operator: hope for SEG_ABSOLUTE */
+      switch(operand (expressionP)) {
+      case SEG_ABSOLUTE:
+                   /* input_line_pointer -> char after operand */
+       if ( c=='-' )
+         {
+           expressionP -> X_add_number = - expressionP -> X_add_number;
+/*
+ * Notice: '-' may  overflow: no warning is given. This is compatible
+ * with other people's assemblers. Sigh.
+ */
+         }
+       else
+         {
+           expressionP -> X_add_number = ~ expressionP -> X_add_number;
+         }
+         break;
+
+      case SEG_TEXT:
+      case SEG_DATA:
+      case SEG_BSS:
+      case SEG_PASS1:
+      case SEG_UNKNOWN:
+       if(c=='-') {            /* JF I hope this hack works */
+         expressionP->X_subtract_symbol=expressionP->X_add_symbol;
+         expressionP->X_add_symbol=0;
+         expressionP->X_seg=SEG_DIFFERENCE;
+         break;
+       }
+      default:         /* unary on non-absolute is unsuported */
+       as_warn("Unary operator %c ignored because bad operand follows", c);
+       break;
+       /* Expression undisturbed from operand(). */
+      }
+    }
+  else if (c=='\'')
+    {
+/*
+ * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted
+ * for a single quote. The next character, parity errors and all, is taken
+ * as the value of the operand. VERY KINKY.
+ */
+      expressionP -> X_add_number = * input_line_pointer ++;
+      expressionP -> X_seg        = SEG_ABSOLUTE;
+    }
+  else
+    {
+                     /* can't imagine any other kind of operand */
+      expressionP -> X_seg = SEG_NONE;
+      input_line_pointer --;
+    }
+/*
+ * It is more 'efficient' to clean up the expressions when they are created.
+ * Doing it here saves lines of code.
+ */
+  clean_up_expression (expressionP);
+  SKIP_WHITESPACE();           /* -> 1st char after operand. */
+  know( * input_line_pointer != ' ' );
+  return (expressionP -> X_seg);
+}                              /* operand */
+\f
+/* Internal. Simplify a struct expression for use by expr() */
+
+/*
+ * In: address of a expressionS.
+ *     The X_seg field of the expressionS may only take certain values.
+ *     Now, we permit SEG_PASS1 to make code smaller & faster.
+ *     Elsewise we waste time special-case testing. Sigh. Ditto SEG_NONE.
+ * Out:        expressionS may have been modified:
+ *     'foo-foo' symbol references cancelled to 0,
+ *             which changes X_seg from SEG_DIFFERENCE to SEG_ABSOLUTE;
+ *     Unused fields zeroed to help expr().
+ */
+
+static void
+clean_up_expression (expressionP)
+     register expressionS * expressionP;
+{
+  switch (expressionP -> X_seg)
+    {
+    case SEG_NONE:
+    case SEG_PASS1:
+      expressionP -> X_add_symbol      = NULL;
+      expressionP -> X_subtract_symbol = NULL;
+      expressionP -> X_add_number      = 0;
+      break;
+
+    case SEG_BIG:
+    case SEG_ABSOLUTE:
+      expressionP -> X_subtract_symbol = NULL;
+      expressionP -> X_add_symbol      = NULL;
+      break;
+
+    case SEG_TEXT:
+    case SEG_DATA:
+    case SEG_BSS:
+    case SEG_UNKNOWN:
+      expressionP -> X_subtract_symbol = NULL;
+      break;
+
+    case SEG_DIFFERENCE:
+      /*
+       * It does not hurt to 'cancel' NULL==NULL
+       * when comparing symbols for 'eq'ness.
+       * It is faster to re-cancel them to NULL
+       * than to check for this special case.
+       */
+      if (expressionP -> X_subtract_symbol == expressionP -> X_add_symbol
+          || (   expressionP->X_subtract_symbol
+             && expressionP->X_add_symbol
+             && expressionP->X_subtract_symbol->sy_frag==expressionP->X_add_symbol->sy_frag
+             && expressionP->X_subtract_symbol->sy_value==expressionP->X_add_symbol->sy_value))
+       {
+         expressionP -> X_subtract_symbol      = NULL;
+         expressionP -> X_add_symbol           = NULL;
+         expressionP -> X_seg                  = SEG_ABSOLUTE;
+       }
+      break;
+
+    default:
+      BAD_CASE( expressionP -> X_seg);
+      break;
+    }
+}
+\f
+/*
+ *                     expr_part ()
+ *
+ * Internal. Made a function because this code is used in 2 places.
+ * Generate error or correct X_?????_symbol of expressionS.
+ */
+
+/*
+ * symbol_1 += symbol_2 ... well ... sort of.
+ */
+
+static segT
+expr_part (symbol_1_PP, symbol_2_P)
+     struct symbol **  symbol_1_PP;
+     struct symbol *   symbol_2_P;
+{
+  segT                 return_value;
+
+  know(    (* symbol_1_PP)                     == NULL
+       || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_TEXT
+       || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_DATA
+       || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_BSS
+       || ((* symbol_1_PP) -> sy_type & N_TYPE) == N_UNDF
+       );
+  know(      symbol_2_P             == NULL
+       ||    (symbol_2_P   -> sy_type & N_TYPE) == N_TEXT
+       ||    (symbol_2_P   -> sy_type & N_TYPE) == N_DATA
+       ||    (symbol_2_P   -> sy_type & N_TYPE) == N_BSS
+       ||    (symbol_2_P   -> sy_type & N_TYPE) == N_UNDF
+       );
+  if (* symbol_1_PP)
+    {
+      if (((* symbol_1_PP) -> sy_type & N_TYPE) == N_UNDF)
+       {
+         if (symbol_2_P)
+           {
+             return_value = SEG_PASS1;
+             * symbol_1_PP = NULL;
+           }
+         else
+           {
+             know( ((* symbol_1_PP) -> sy_type & N_TYPE) == N_UNDF)
+             return_value = SEG_UNKNOWN;
+           }
+       }
+      else
+       {
+         if (symbol_2_P)
+           {
+             if ((symbol_2_P -> sy_type & N_TYPE) == N_UNDF)
+               {
+                 * symbol_1_PP = NULL;
+                 return_value = SEG_PASS1;
+               }
+             else
+               {
+                 /* {seg1} - {seg2} */
+                 as_warn( "Expression too complex, 2 symbols forgotten: \"%s\" \"%s\"",
+                         (* symbol_1_PP) -> sy_name, symbol_2_P -> sy_name );
+                 * symbol_1_PP = NULL;
+                 return_value = SEG_ABSOLUTE;
+               }
+           }
+         else
+           {
+             return_value = N_TYPE_seg [(* symbol_1_PP) -> sy_type & N_TYPE];
+           }
+       }
+    }
+  else
+    {                          /* (* symbol_1_PP) == NULL */
+      if (symbol_2_P)
+       {
+         * symbol_1_PP = symbol_2_P;
+         return_value = N_TYPE_seg [(symbol_2_P) -> sy_type & N_TYPE];
+       }
+      else
+       {
+         * symbol_1_PP = NULL;
+         return_value = SEG_ABSOLUTE;
+       }
+    }
+  know(   return_value == SEG_ABSOLUTE                 
+       || return_value == SEG_TEXT                     
+       || return_value == SEG_DATA                     
+       || return_value == SEG_BSS                      
+       || return_value == SEG_UNKNOWN                  
+       || return_value == SEG_PASS1                    
+       );
+  know(   (* symbol_1_PP) == NULL                              
+       || ((* symbol_1_PP) -> sy_type & N_TYPE) == seg_N_TYPE [(int) return_value] );
+  return (return_value);
+}                              /* expr_part() */
+\f
+/* Expression parser. */
+
+/*
+ * We allow an empty expression, and just assume (absolute,0) silently.
+ * Unary operators and parenthetical expressions are treated as operands.
+ * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
+ *
+ * We used to do a aho/ullman shift-reduce parser, but the logic got so
+ * warped that I flushed it and wrote a recursive-descent parser instead.
+ * Now things are stable, would anybody like to write a fast parser?
+ * Most expressions are either register (which does not even reach here)
+ * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
+ * So I guess it doesn't really matter how inefficient more complex expressions
+ * are parsed.
+ *
+ * After expr(RANK,resultP) input_line_pointer -> operator of rank <= RANK.
+ * Also, we have consumed any leading or trailing spaces (operand does that)
+ * and done all intervening operators.
+ */
+
+typedef enum
+{
+O_illegal,                     /* (0)  what we get for illegal op */
+
+O_multiply,                    /* (1)  * */
+O_divide,                      /* (2)  / */
+O_modulus,                     /* (3)  % */
+O_left_shift,                  /* (4)  < */
+O_right_shift,                 /* (5)  > */
+O_bit_inclusive_or,            /* (6)  | */
+O_bit_or_not,                  /* (7)  ! */
+O_bit_exclusive_or,            /* (8)  ^ */
+O_bit_and,                     /* (9)  & */
+O_add,                         /* (10) + */
+O_subtract                     /* (11) - */
+}
+operatorT;
+
+#define __ O_illegal
+
+static const operatorT op_encoding [256] = {   /* maps ASCII -> operators */
+
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+
+__, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
+__, __, O_multiply, O_add, __, O_subtract, __, O_divide,
+__, __, __, __, __, __, __, __,
+__, __, __, __, O_left_shift, __, O_right_shift, __,
+__, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __,
+__, __, __, __, __, __, O_bit_exclusive_or, __,
+__, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __,
+__, __, __, __, O_bit_inclusive_or, __, __, __,
+
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
+__, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
+};
+
+
+/*
+ *     Rank    Examples
+ *     0       operand, (expression)
+ *     1       + -
+ *     2       & ^ ! |
+ *     3       * / % < >
+ */
+typedef char operator_rankT;
+static const operator_rankT
+op_rank [] = { 0, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1 };
+\f
+segT                           /* Return resultP -> X_seg. */
+expr (rank, resultP)
+     register operator_rankT   rank; /* Larger # is higher rank. */
+     register expressionS *    resultP; /* Deliver result here. */
+{
+  expressionS          right;
+  register operatorT   op_left;
+  register char                c_left; /* 1st operator character. */
+  register operatorT   op_right;
+  register char                c_right;
+
+  know( rank >= 0 );
+  (void)operand (resultP);
+  know( * input_line_pointer != ' ' ); /* Operand() gobbles spaces. */
+  c_left = * input_line_pointer; /* Potential operator character. */
+  op_left = op_encoding [c_left];
+  while (op_left != O_illegal && op_rank [(int) op_left] > rank)
+    {
+      input_line_pointer ++;   /* -> after 1st character of operator. */
+                               /* Operators "<<" and ">>" have 2 characters. */
+      if (* input_line_pointer == c_left && (c_left == '<' || c_left == '>') )
+       {
+         input_line_pointer ++;
+       }                       /* -> after operator. */
+      if (SEG_NONE == expr (op_rank[(int) op_left], &right))
+       {
+         as_warn("Missing operand value assumed absolute 0.");
+         resultP -> X_add_number       = 0;
+         resultP -> X_subtract_symbol  = NULL;
+         resultP -> X_add_symbol       = NULL;
+         resultP -> X_seg = SEG_ABSOLUTE;
+       }
+      know( * input_line_pointer != ' ' );
+      c_right = * input_line_pointer;
+      op_right = op_encoding [c_right];
+      if (* input_line_pointer == c_right && (c_right == '<' || c_right == '>') )
+       {
+         input_line_pointer ++;
+       }                       /* -> after operator. */
+      know(   (int) op_right == 0
+          || op_rank [(int) op_right] <= op_rank[(int) op_left] );
+      /* input_line_pointer -> after right-hand quantity. */
+      /* left-hand quantity in resultP */
+      /* right-hand quantity in right. */
+      /* operator in op_left. */
+      if ( resultP -> X_seg == SEG_PASS1 || right . X_seg == SEG_PASS1 )
+       {
+         resultP -> X_seg = SEG_PASS1;
+       }
+      else
+       {
+         if ( resultP -> X_seg == SEG_BIG )
+           {
+             as_warn( "Left operand of %c is a %s.  Integer 0 assumed.",
+                     c_left, resultP -> X_add_number > 0 ? "bignum" : "float");
+             resultP -> X_seg = SEG_ABSOLUTE;
+             resultP -> X_add_symbol = 0;
+             resultP -> X_subtract_symbol = 0;
+             resultP -> X_add_number = 0;
+           }
+         if ( right . X_seg == SEG_BIG )
+           {
+             as_warn( "Right operand of %c is a %s.  Integer 0 assumed.",
+                     c_left, right . X_add_number > 0 ? "bignum" : "float");
+             right . X_seg = SEG_ABSOLUTE;
+             right . X_add_symbol = 0;
+             right . X_subtract_symbol = 0;
+             right . X_add_number = 0;
+           }
+         if ( op_left == O_subtract )
+           {
+             /*
+              * Convert - into + by exchanging symbols and negating number.
+              * I know -infinity can't be negated in 2's complement:
+              * but then it can't be subtracted either. This trick
+              * does not cause any further inaccuracy.
+              */
+
+             register struct symbol *  symbolP;
+
+             right . X_add_number      = - right . X_add_number;
+             symbolP                   = right . X_add_symbol;
+             right . X_add_symbol      = right . X_subtract_symbol;
+             right . X_subtract_symbol = symbolP;
+             if (symbolP)
+               {
+                 right . X_seg         = SEG_DIFFERENCE;
+               }
+             op_left = O_add;
+           }
+\f
+         if ( op_left == O_add )
+           {
+             segT      seg1;
+             segT      seg2;
+             
+             know(   resultP -> X_seg == SEG_DATA              
+                  || resultP -> X_seg == SEG_TEXT              
+                  || resultP -> X_seg == SEG_BSS               
+                  || resultP -> X_seg == SEG_UNKNOWN           
+                  || resultP -> X_seg == SEG_DIFFERENCE        
+                  || resultP -> X_seg == SEG_ABSOLUTE          
+                  || resultP -> X_seg == SEG_PASS1             
+                  );
+             know(     right .  X_seg == SEG_DATA              
+                  ||   right .  X_seg == SEG_TEXT              
+                  ||   right .  X_seg == SEG_BSS               
+                  ||   right .  X_seg == SEG_UNKNOWN           
+                  ||   right .  X_seg == SEG_DIFFERENCE        
+                  ||   right .  X_seg == SEG_ABSOLUTE          
+                  ||   right .  X_seg == SEG_PASS1             
+                  );
+             
+             clean_up_expression (& right);
+             clean_up_expression (resultP);
+
+             seg1 = expr_part (& resultP -> X_add_symbol, right . X_add_symbol);
+             seg2 = expr_part (& resultP -> X_subtract_symbol, right . X_subtract_symbol);
+             if (seg1 == SEG_PASS1 || seg2 == SEG_PASS1) {
+                 need_pass_2 = TRUE;
+                 resultP -> X_seg = SEG_PASS1;
+             } else if (seg2 == SEG_ABSOLUTE)
+                 resultP -> X_seg = seg1;
+             else if (   seg1 != SEG_UNKNOWN
+                       && seg1 != SEG_ABSOLUTE
+                       && seg2 != SEG_UNKNOWN
+                       && seg1 != seg2) {
+                 know( seg2 != SEG_ABSOLUTE );
+                 know( resultP -> X_subtract_symbol );
+
+                 know( seg1 == SEG_TEXT || seg1 == SEG_DATA || seg1== SEG_BSS );
+                 know( seg2 == SEG_TEXT || seg2 == SEG_DATA || seg2== SEG_BSS );
+                 know( resultP -> X_add_symbol      );
+                 know( resultP -> X_subtract_symbol );
+                 as_warn("Expression too complex: forgetting %s - %s",
+                         resultP -> X_add_symbol      -> sy_name,
+                         resultP -> X_subtract_symbol -> sy_name);
+                 resultP -> X_seg = SEG_ABSOLUTE;
+                 /* Clean_up_expression() will do the rest. */
+               } else
+                 resultP -> X_seg = SEG_DIFFERENCE;
+
+             resultP -> X_add_number += right . X_add_number;
+             clean_up_expression (resultP);
+           }
+         else
+           {                   /* Not +. */
+             if ( resultP -> X_seg == SEG_UNKNOWN || right . X_seg == SEG_UNKNOWN )
+               {
+                 resultP -> X_seg = SEG_PASS1;
+                 need_pass_2 = TRUE;
+               }
+             else
+               {
+                 resultP -> X_subtract_symbol = NULL;
+                 resultP -> X_add_symbol = NULL;
+                 /* Will be SEG_ABSOLUTE. */
+                 if ( resultP -> X_seg != SEG_ABSOLUTE || right . X_seg != SEG_ABSOLUTE )
+                   {
+                     as_warn( "Relocation error. Absolute 0 assumed.");
+                     resultP -> X_seg        = SEG_ABSOLUTE;
+                     resultP -> X_add_number = 0;
+                   }
+                 else
+                   {
+                     switch ( op_left )
+                       {
+                       case O_bit_inclusive_or:
+                         resultP -> X_add_number |= right . X_add_number;
+                         break;
+                         
+                       case O_modulus:
+                         if (right . X_add_number)
+                           {
+                             resultP -> X_add_number %= right . X_add_number;
+                           }
+                         else
+                           {
+                             as_warn( "Division by 0. 0 assumed." );
+                             resultP -> X_add_number = 0;
+                           }
+                         break;
+                         
+                       case O_bit_and:
+                         resultP -> X_add_number &= right . X_add_number;
+                         break;
+                         
+                       case O_multiply:
+                         resultP -> X_add_number *= right . X_add_number;
+                         break;
+                         
+                       case O_divide:
+                         if (right . X_add_number)
+                           {
+                             resultP -> X_add_number /= right . X_add_number;
+                           }
+                         else
+                           {
+                             as_warn( "Division by 0. 0 assumed." );
+                             resultP -> X_add_number = 0;
+                           }
+                         break;
+                         
+                       case O_left_shift:
+                         resultP -> X_add_number <<= right . X_add_number;
+                         break;
+                         
+                       case O_right_shift:
+                         resultP -> X_add_number >>= right . X_add_number;
+                         break;
+                         
+                       case O_bit_exclusive_or:
+                         resultP -> X_add_number ^= right . X_add_number;
+                         break;
+                         
+                       case O_bit_or_not:
+                         resultP -> X_add_number |= ~ right . X_add_number;
+                         break;
+                         
+                       default:
+                         BAD_CASE( op_left );
+                         break;
+                       } /* switch(operator) */
+                   }
+               }               /* If we have to force need_pass_2. */
+           }                   /* If operator was +. */
+       }                       /* If we didn't set need_pass_2. */
+      op_left = op_right;
+    }                          /* While next operator is >= this rank. */
+  return (resultP -> X_seg);
+}
+\f
+/*
+ *                     get_symbol_end()
+ *
+ * This lives here because it belongs equally in expr.c & read.c.
+ * Expr.c is just a branch office read.c anyway, and putting it
+ * here lessens the crowd at read.c.
+ *
+ * Assume input_line_pointer is at start of symbol name.
+ * Advance input_line_pointer past symbol name.
+ * Turn that character into a '\0', returning its former value.
+ * This allows a string compare (RMS wants symbol names to be strings)
+ * of the symbol name.
+ * There will always be a char following symbol name, because all good
+ * lines end in end-of-line.
+ */
+char
+get_symbol_end()
+{
+  register char c;
+
+  while ( is_part_of_name( c = * input_line_pointer ++ ) )
+    ;
+  * -- input_line_pointer = 0;
+  return (c);
+}
+
+/* end: expr.c */