date and time created 85/05/23 17:12:34 by miriam
authorMiriam Amos Nihart <miriam@ucbvax.Berkeley.EDU>
Fri, 24 May 1985 08:12:34 +0000 (00:12 -0800)
committerMiriam Amos Nihart <miriam@ucbvax.Berkeley.EDU>
Fri, 24 May 1985 08:12:34 +0000 (00:12 -0800)
SCCS-vsn: old/libm/libm/IEEE/support.c 1.1

usr/src/old/libm/libm/IEEE/support.c [new file with mode: 0644]

diff --git a/usr/src/old/libm/libm/IEEE/support.c b/usr/src/old/libm/libm/IEEE/support.c
new file mode 100644 (file)
index 0000000..5f59687
--- /dev/null
@@ -0,0 +1,473 @@
+From Prof. Kahan at UC at Berkeley
+/* 
+ * Copyright (c) 1985 Regents of the University of California.
+ * 
+ * Use and reproduction of this software are granted  in  accordance  with
+ * the terms and conditions specified in  the  Berkeley  Software  License
+ * Agreement (in particular, this entails acknowledgement of the programs'
+ * source, and inclusion of this notice) with the additional understanding
+ * that  all  recipients  should regard themselves as participants  in  an
+ * ongoing  research  project and hence should  feel  obligated  to report
+ * their  experiences (good or bad) with these elementary function  codes,
+ * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
+ */
+
+#ifndef lint
+static char sccsid[] = "@(#)support.c  1.1 (Berkeley) %G%";
+#endif not lint
+
+/* 
+ * Some IEEE standard p754 recommended functions and remainder and sqrt for 
+ * supporting the C elementary functions.
+ ******************************************************************************
+ * WARNING:
+ *      These codes are developed (in double) to support the C elementary
+ * functions temporarily. They are not universal, and some of them are very
+ * slow (in particular, drem and sqrt is extremely inefficient). Each 
+ * computer system should have its implementation of these functions using 
+ * its own assembler.
+ ******************************************************************************
+ *
+ * IEEE p754 required operations:
+ *     drem(x,p) 
+ *              returns  x REM y  =  x - [x/y]*y , where [x/y] is the integer
+ *              nearest x/y; in half way case, choose the even one.
+ *     sqrt(x) 
+ *              returns the square root of x correctly rounded according to 
+ *             the rounding mod.
+ *
+ * IEEE p754 recommended functions:
+ * (a) copysign(x,y) 
+ *              returns x with the sign of y. 
+ * (b) scalb(x,N) 
+ *              returns  x * (2**N), for integer values N.
+ * (c) logb(x) 
+ *              returns the unbiased exponent of x, a signed integer in 
+ *              double precision, except that logb(0) is -INF, logb(INF) 
+ *              is +INF, and logb(NAN) is that NAN.
+ * (d) finite(x) 
+ *              returns the value TRUE if -INF < x < +INF and returns 
+ *              FALSE otherwise.
+ *
+ *
+ * CODED IN C BY K.C. NG, 11/25/84;
+ * REVISED BY K.C. NG on 1/22/85, 2/13/85, 3/24/85.
+ */
+
+
+#ifdef VAX      /* VAX D format */
+    static unsigned short msign=0x7fff , mexp =0x7f80 ;
+    static short  prep1=57, gap=7, bias=129           ;   
+    static double novf=1.7E38, nunf=3.0E-39, zero=0.0 ;
+#else           /*IEEE double format */
+    static unsigned short msign=0x7fff, mexp =0x7ff0  ;
+    static short prep1=54, gap=4, bias=1023           ;
+    static double novf=1.7E308, nunf=3.0E-308,zero=0.0;
+#endif
+
+double scalb(x,N)
+double x; int N;
+{
+        int k;
+        double scalb();
+
+#ifdef NATIONAL
+        unsigned short *px=(unsigned short *) &x + 3;
+#else /* VAX, SUN, ZILOG */
+        unsigned short *px=(unsigned short *) &x;
+#endif
+
+        if( x == zero )  return(x); 
+
+#ifdef VAX
+        if( (k= *px & mexp ) != ~msign ) {
+            if( N<-260) return(nunf*nunf); else if(N>260) return(novf+novf);
+#else   /* IEEE */
+        if( (k= *px & mexp ) != mexp ) {
+            if( N<-2100) return(nunf*nunf); else if(N>2100) return(novf+novf);
+            if( k == 0 ) {
+                 x *= scalb(1.0,(int)prep1);  N -= prep1; return(scalb(x,N));}
+#endif
+
+            if((k = (k>>gap)+ N) > 0 )
+                if( k < (mexp>>gap) ) *px = (*px&~mexp) | (k<<gap);
+                else x=novf+novf;               /* overflow */
+            else
+                if( k > -prep1 ) 
+                                        /* gradual underflow */
+                    {*px=(*px&~mexp)|(short)(1<<gap); x *= scalb(1.0,k-1);}
+                else
+                return(nunf*nunf);
+            }
+        return(x);
+}
+
+
+double copysign(x,y)
+double x,y;
+{
+#ifdef NATIONAL
+        unsigned short  *px=(unsigned short *) &x+3,
+                        *py=(unsigned short *) &y+3;
+#else /* VAX, SUN, ZILOG */
+        unsigned short  *px=(unsigned short *) &x,
+                        *py=(unsigned short *) &y;
+#endif
+
+#ifdef VAX
+        if ( (*px & mexp) == 0 ) return(x);
+#endif
+
+        *px = ( *px & msign ) | ( *py & ~msign );
+        return(x);
+}
+
+double logb(x)
+double x; 
+{
+
+#ifdef NATIONAL
+        short *px=(short *) &x+3, k;
+#else /* VAX, SUN, ZILOG */
+        short *px=(short *) &x, k;
+#endif
+
+#ifdef VAX
+        return( ((*px & mexp)>>gap) - bias);
+#else /* IEEE */
+        if( (k= *px & mexp ) != mexp )
+            if ( k != 0 )
+                return ( (k>>gap) - bias );
+            else if( x != zero)
+                return ( -1022.0 );
+            else        
+                return(-(1.0/zero));    
+        else if(x != x)
+            return(x);
+        else
+            {*px &= msign; return(x);}
+#endif
+}
+
+finite(x)
+double x;    
+{
+#ifdef VAX
+        return(1.0);
+#else  /* IEEE */
+#ifdef NATIONAL
+        return( (*((short *) &x+3 ) & mexp ) != mexp );
+#else /* SUN, ZILOG */
+        return( (*((short *) &x ) & mexp ) != mexp );
+#endif
+#endif
+}
+
+double drem(x,p)
+double x,p;
+{
+        short sign;
+        double hp,dp,tmp,drem(),scalb();
+        unsigned short  k; 
+#ifdef NATIONAL
+        unsigned short
+              *px=(unsigned short *) &x  +3, 
+              *pp=(unsigned short *) &p  +3,
+              *pd=(unsigned short *) &dp +3,
+              *pt=(unsigned short *) &tmp+3;
+#else /* VAX, SUN, ZILOG */
+        unsigned short
+              *px=(unsigned short *) &x  , 
+              *pp=(unsigned short *) &p  ,
+              *pd=(unsigned short *) &dp ,
+              *pt=(unsigned short *) &tmp;
+#endif
+
+        *pp &= msign ;
+
+#ifdef VAX
+        if( ( *px & mexp ) == ~msign || p == zero )
+#else /* IEEE */
+        if( ( *px & mexp ) == mexp || p == zero )
+#endif
+
+                return( (x != x)? x:zero/zero );
+
+        else  if ( ((*pp & mexp)>>gap) <= 1 ) 
+                /* subnormal p, or almost subnormal p */
+            { double b; b=scalb(1.0,(int)prep1);
+              p *= b; x = drem(x,p); x *= b; return(drem(x,p)/b);}
+        else  if ( p >= novf/2)
+            { p /= 2 ; x /= 2; return(drem(x,p)*2);}
+        else 
+            {
+                dp=p+p; hp=p/2;
+                sign= *px & ~msign ;
+                *px &= msign       ;
+                while ( x > dp )
+                    {
+                        k=(*px & mexp) - (*pd & mexp) ;
+                        tmp = dp ;
+                        *pt += k ;
+
+#ifdef VAX
+                        if( x < tmp ) *pt -= 128 ;
+#else /* IEEE */
+                        if( x < tmp ) *pt -= 16 ;
+#endif
+
+                        x -= tmp ;
+                    }
+                if ( x > hp )
+                    { x -= p ;  if ( x >= hp ) x -= p ; }
+
+               *px = *px ^ sign;
+                return( x);
+
+            }
+}
+double sqrt(x)
+double x;
+{
+        double q,s,b,r;
+        double logb(),scalb();
+        double t,zero=0.0;
+        int m,n,i,finite();
+#ifdef VAX
+        int k=54;
+#else   /* IEEE */
+        int k=51;
+#endif
+
+    /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
+        if(x!=x||x==zero) return(x);
+
+    /* sqrt(negative) is invalid */
+        if(x<zero) return(zero/zero);
+
+    /* sqrt(INF) is INF */
+        if(!finite(x)) return(x);               
+
+    /* scale x to [1,4) */
+        n=logb(x);
+        x=scalb(x,-n);
+        if((m=logb(x))!=0) x=scalb(x,-m);       /* subnormal number */
+        m += n; 
+        n = m/2;
+        if((n+n)!=m) {x *= 2; m -=1; n=m/2;}
+
+    /* generate sqrt(x) bit by bit (accumulating in q) */
+            q=1.0; s=4.0; x -= 1.0; r=1;
+            for(i=1;i<=k;i++) {
+                t=s+1; x *= 4; r /= 2;
+                if(t<=x) {
+                    s=t+t+2, x -= t; q += r;}
+                else
+                    s *= 2;
+                }
+            
+    /* generate the last bit and determine the final rounding */
+            r/=2; x *= 4; 
+            if(x==zero) goto end; 100+r; /* trigger inexact flag */
+            if(s<x) {
+                q+=r; x -=s; s += 2; s *= 2; x *= 4;
+                t = (x-s)-5; 
+                b=1.0+3*r/4; if(b==1.0) goto end; /* b==1 : Round-to-zero */
+                b=1.0+r/4;   if(b>1.0) t=1;    /* b>1 : Round-to-(+INF) */
+                if(t>=0) q+=r; }             /* else: Round-to-nearest */
+            else { 
+                s *= 2; x *= 4; 
+                t = (x-s)-1; 
+                b=1.0+3*r/4; if(b==1.0) goto end;
+                b=1.0+r/4;   if(b>1.0) t=1;
+                if(t>=0) q+=r; }
+            
+end:        return(scalb(q,n));
+}
+
+#if 0
+/* DREM(X,Y)
+ * RETURN X REM Y =X-N*Y, N=[X/Y] ROUNDED (ROUNDED TO EVEN IN THE HALF WAY CASE)
+ * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
+ * INTENDED FOR ASSEMBLY LANGUAGE
+ * CODED IN C BY K.C. NG, 3/23/85, 4/8/85.
+ *
+ * Warning: this code should not get compiled in unless ALL of
+ * the following machine-dependent routines are supplied.
+ * 
+ * Required machine dependent functions (not on a VAX):
+ *     swapINX(i): save inexact flag and reset it to "i"
+ *     swapENI(e): save inexact enable and reset it to "e"
+ */
+
+double drem(x,y)       
+double x,y;
+{
+
+#ifdef NATIONAL                /* order of words in floating point number */
+       static n0=3,n1=2,n2=1,n3=0;
+#else /* VAX, SUN, ZILOG */
+       static n0=0,n1=1,n2=2,n3=3;
+#endif
+
+       static unsigned short mexp =0x7ff0, m25 =0x0190, m57 =0x0390;
+       static double zero=0.0;
+       double hy,y1,t,t1;
+       short k;
+       long n;
+       int i,e; 
+       unsigned short xexp,yexp, *px  =(unsigned short *) &x  , 
+                       nx,nf,    *py  =(unsigned short *) &y  ,
+                       sign,     *pt  =(unsigned short *) &t  ,
+                                 *pt1 =(unsigned short *) &t1 ;
+
+       xexp = px[n0] & mexp ;  /* exponent of x */
+       yexp = py[n0] & mexp ;  /* exponent of y */
+       sign = px[n0] &0x8000;  /* sign of x     */
+
+/* return NaN if x is NaN, or y is NaN, or x is INF, or y is zero */
+       if(x!=x) return(x); if(y!=y) return(y);      /* x or y is NaN */
+       if( xexp == mexp )   return(zero/zero);      /* x is INF */
+       if(y==zero) return(y/y);
+
+/* save the inexact flag and inexact enable in i and e respectively
+ * and reset them to zero
+ */
+       i=swapINX(0);   e=swapENI(0);   
+
+/* subnormal number */
+       nx=0;
+       if(yexp==0) {t=1.0,pt[n0]+=m57; y*=t; nx=m57;}
+
+/* if y is tiny (biased exponent <= 57), scale up y to y*2**57 */
+       if( yexp <= m57 ) {py[n0]+=m57; nx+=m57; yexp+=m57;}
+
+       nf=nx;
+       py[n0] &= 0x7fff;       
+       px[n0] &= 0x7fff;
+
+/* mask off the least significant 27 bits of y */
+       t=y; pt[n3]=0; pt[n2]&=0xf800; y1=t;
+
+/* LOOP: argument reduction on x whenever x > y */
+loop:
+       while ( x > y )
+       {
+           t=y;
+           t1=y1;
+           xexp=px[n0]&mexp;     /* exponent of x */
+           k=xexp-yexp-m25;
+           if(k>0)     /* if x/y >= 2**26, scale up y so that x/y < 2**26 */
+               {pt[n0]+=k;pt1[n0]+=k;}
+           n=x/t; x=(x-n*t1)-n*(t-t1);
+       }       
+    /* end while (x > y) */
+
+       if(nx!=0) {t=1.0; pt[n0]+=nx; x*=t; nx=0; goto loop;}
+
+/* final adjustment */
+
+       hy=y/2.0;
+       if(x>hy||((x==hy)&&n%2==1)) x-=y; 
+       px[n0] ^= sign;
+       if(nf!=0) { t=1.0; pt[n0]-=nf; x*=t;}
+
+/* restore inexact flag and inexact enable */
+       swapINX(i); swapENI(e); 
+
+       return(x);      
+}
+#endif
+
+#if 0
+/* SQRT
+ * RETURN CORRECTLY ROUNDED (ACCORDING TO THE ROUNDING MODE) SQRT
+ * FOR IEEE DOUBLE PRECISION ONLY, INTENDED FOR ASSEMBLY LANGUAGE
+ * CODED IN C BY K.C. NG, 3/22/85.
+ *
+ * Warning: this code should not get compiled in unless ALL of
+ * the following machine-dependent routines are supplied.
+ * 
+ * Required machine dependent functions:
+ *     swapINX(i)  ...return the status of INEXACT flag and reset it to "i"
+ *     swapRM(r)   ...return the current Rounding Mode and reset it to "r"
+ *     swapENI(e)  ...return the status of inexact enable and reset it to "e"
+ *     addc(t)     ...perform t=t+1 regarding t as a 64 bit unsigned integer
+ *     subc(t)     ...perform t=t-1 regarding t as a 64 bit unsigned integer
+ */
+
+static unsigned long table[] = {
+0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740,
+58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478,
+21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130, };
+
+double newsqrt(x)
+double x;
+{
+        double y,z,t,addc(),subc(),b54=134217728.*134217728.; /* b54=2**54 */
+        long mx,scalx,mexp=0x7ff00000;
+        int i,j,r,e,swapINX(),swapRM(),swapENI();       
+        unsigned long *py=(unsigned long *) &y   ,
+                      *pt=(unsigned long *) &t   ,
+                      *px=(unsigned long *) &x   ;
+#ifdef NATIONAL         /* ordering of word in a floating point number */
+        int n0=1, n1=0; 
+#else
+        int n0=0, n1=1; 
+#endif
+/* Rounding Mode:  RN ...round-to-nearest 
+ *                 RZ ...round-towards 0
+ *                 RP ...round-towards +INF
+ *                RM ...round-towards -INF
+ */
+        int RN=0,RZ=1,RP=2,RM=3;/* machine dependent: work on a Zilog Z8070
+                                 * and a National 32081 & 16081
+                                 */
+
+/* exceptions */
+       if(x!=x||x==0.0) return(x);  /* sqrt(NaN) is NaN, sqrt(+-0) = +-0 */
+       if(x<0) return((x-x)/(x-x)); /* sqrt(negative) is invalid */
+        if((mx=px[n0]&mexp)==mexp) return(x);  /* sqrt(+INF) is +INF */
+
+/* save, reset, initialize */
+        e=swapENI(0);   /* ...save and reset the inexact enable */
+        i=swapINX(0);   /* ...save INEXACT flag */
+        r=swapRM(RN);   /* ...save and reset the Rounding Mode to RN */
+        scalx=0;
+
+/* subnormal number, scale up x to x*2**54 */
+        if(mx==0) {x *= b54 ; scalx-=0x01b00000;}
+
+/* scale x to avoid intermediate over/underflow:
+ * if (x > 2**512) x=x/2**512; if (x < 2**-512) x=x*2**512 */
+        if(mx>0x5ff00000) {px[n0] -= 0x20000000; scalx+= 0x10000000;}
+        if(mx<0x1ff00000) {px[n0] += 0x20000000; scalx-= 0x10000000;}
+
+/* magic initial approximation to almost 8 sig. bits */
+        py[n0]=(px[n0]>>1)+0x1ff80000;
+        py[n0]=py[n0]-table[(py[n0]>>15)&31];
+
+/* Heron's rule once with correction to improve y to almost 18 sig. bits */
+        t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0;
+
+/* triple to almost 56 sig. bits; now y approx. sqrt(x) to within 1 ulp */
+        t=y*y; z=t;  pt[n0]+=0x00100000; t+=z; z=(x-z)*y; 
+        t=z/(t+x) ;  pt[n0]+=0x00100000; y+=t;
+
+/* twiddle last bit to force y correctly rounded */ 
+        swapRM(RZ);     /* ...set Rounding Mode to round-toward-zero */
+        swapINX(0);     /* ...clear INEXACT flag */
+        swapENI(e);     /* ...restore inexact enable status */
+        t=x/y;          /* ...chopped quotient, possibly inexact */
+        j=swapINX(i);   /* ...read and restore inexact flag */
+        if(j==0) { if(t==y) goto end; else t=subc(t); }  /* ...t=t-ulp */
+        b54+0.1;        /* ..trigger inexact flag, sqrt(x) is inexact */
+        if(r==RN) t=addc(t);            /* ...t=t+ulp */
+        else if(r==RP) { t=addc(t);y=addc(y);}/* ...t=t+ulp;y=y+ulp; */
+        y=y+t;                          /* ...chopped sum */
+        py[n0]=py[n0]-0x00100000;       /* ...correctly rounded sqrt(x) */
+end:    py[n0]=py[n0]+scalx;            /* ...scale back y */
+        swapRM(r);                      /* ...restore Rounding Mode */
+        return(y);
+}
+#endif