386BSD 0.0 development
authorWilliam F. Jolitz <wjolitz@soda.berkeley.edu>
Mon, 16 Jul 1990 16:13:13 +0000 (08:13 -0800)
committerWilliam F. Jolitz <wjolitz@soda.berkeley.edu>
Mon, 16 Jul 1990 16:13:13 +0000 (08:13 -0800)
Work on file usr/src/usr.bin/gas/config/atof-ieee.c

Co-Authored-By: Lynne Greer Jolitz <ljolitz@cardio.ucsf.edu>
Synthesized-from: 386BSD-0.0/src

usr/src/usr.bin/gas/config/atof-ieee.c [new file with mode: 0644]

diff --git a/usr/src/usr.bin/gas/config/atof-ieee.c b/usr/src/usr.bin/gas/config/atof-ieee.c
new file mode 100644 (file)
index 0000000..6ff45c8
--- /dev/null
@@ -0,0 +1,505 @@
+/* atof_ieee.c - turn a Flonum into an IEEE floating point number
+   Copyright (C) 1987 Free Software Foundation, Inc.
+
+This file is part of GAS, the GNU Assembler.
+
+GAS is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 1, or (at your option)
+any later version.
+
+GAS is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GAS; see the file COPYING.  If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
+
+#include "flonum.h"
+#ifdef USG
+#define bzero(s,n) memset(s,0,n)
+#define bcopy(from,to,n) memcpy((to),(from),(n))
+#endif
+
+extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
+#define NULL (0)
+
+extern char EXP_CHARS[];
+                               /* Precision in LittleNums. */
+#define MAX_PRECISION (6)
+#define F_PRECISION (2)
+#define D_PRECISION (4)
+#define X_PRECISION (6)
+#define P_PRECISION (6)
+
+                               /* Length in LittleNums of guard bits. */
+#define GUARD (2)
+
+static unsigned long int mask [] = {
+  0x00000000,
+  0x00000001,
+  0x00000003,
+  0x00000007,
+  0x0000000f,
+  0x0000001f,
+  0x0000003f,
+  0x0000007f,
+  0x000000ff,
+  0x000001ff,
+  0x000003ff,
+  0x000007ff,
+  0x00000fff,
+  0x00001fff,
+  0x00003fff,
+  0x00007fff,
+  0x0000ffff,
+  0x0001ffff,
+  0x0003ffff,
+  0x0007ffff,
+  0x000fffff,
+  0x001fffff,
+  0x003fffff,
+  0x007fffff,
+  0x00ffffff,
+  0x01ffffff,
+  0x03ffffff,
+  0x07ffffff,
+  0x0fffffff,
+  0x1fffffff,
+  0x3fffffff,
+  0x7fffffff,
+  0xffffffff
+  };
+\f
+static int bits_left_in_littlenum;
+static int littlenums_left;
+static LITTLENUM_TYPE *        littlenum_pointer;
+
+static int
+next_bits (number_of_bits)
+     int               number_of_bits;
+{
+  int                  return_value;
+
+  if(!littlenums_left)
+       return 0;
+  if (number_of_bits >= bits_left_in_littlenum)
+    {
+      return_value  = mask [bits_left_in_littlenum] & *littlenum_pointer;
+      number_of_bits -= bits_left_in_littlenum;
+      return_value <<= number_of_bits;
+      if(--littlenums_left) {
+             bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
+             littlenum_pointer --;
+             return_value |= (*littlenum_pointer>>bits_left_in_littlenum) & mask[number_of_bits];
+      }
+    }
+  else
+    {
+      bits_left_in_littlenum -= number_of_bits;
+      return_value = mask [number_of_bits] & (*littlenum_pointer>>bits_left_in_littlenum);
+    }
+  return (return_value);
+}
+
+/* Num had better be less than LITTLENUM_NUMBER_OF_BITS */
+static int
+unget_bits(num)
+{
+       if(!littlenums_left) {
+               ++littlenum_pointer;
+               ++littlenums_left;
+               bits_left_in_littlenum=num;
+       } else if(bits_left_in_littlenum+num>LITTLENUM_NUMBER_OF_BITS) {
+               bits_left_in_littlenum= num-(LITTLENUM_NUMBER_OF_BITS-bits_left_in_littlenum);
+               ++littlenum_pointer;
+               ++littlenums_left;
+       } else
+               bits_left_in_littlenum+=num;
+}
+
+static void
+make_invalid_floating_point_number (words)
+     LITTLENUM_TYPE *  words;
+{
+       as_warn("cannot create floating-point number");
+       words[0]= ((unsigned)-1)>>1;    /* Zero the leftmost bit */
+       words[1]= -1;
+       words[2]= -1;
+       words[3]= -1;
+       words[4]= -1;
+       words[5]= -1;
+}
+\f
+/***********************************************************************\
+*      Warning: this returns 16-bit LITTLENUMs. It is up to the caller *
+*      to figure out any alignment problems and to conspire for the    *
+*      bytes/word to be emitted in the right order. Bigendians beware! *
+*                                                                      *
+\***********************************************************************/
+
+/* Note that atof-ieee always has X and P precisions enabled.  it is up
+   to md_atof to filter them out if the target machine does not support
+   them.  */
+
+char *                         /* Return pointer past text consumed. */
+atof_ieee (str, what_kind, words)
+     char *            str;    /* Text to convert to binary. */
+     char              what_kind; /* 'd', 'f', 'g', 'h' */
+     LITTLENUM_TYPE *  words;  /* Build the binary here. */
+{
+       static LITTLENUM_TYPE   bits [MAX_PRECISION + MAX_PRECISION + GUARD];
+                               /* Extra bits for zeroed low-order bits. */
+                               /* The 1st MAX_PRECISION are zeroed, */
+                               /* the last contain flonum bits. */
+       char *          return_value;
+       int             precision; /* Number of 16-bit words in the format. */
+       long int        exponent_bits;
+
+       return_value = str;
+       generic_floating_point_number.low       = bits + MAX_PRECISION;
+       generic_floating_point_number.high      = NULL;
+       generic_floating_point_number.leader    = NULL;
+       generic_floating_point_number.exponent  = NULL;
+       generic_floating_point_number.sign      = '\0';
+
+                               /* Use more LittleNums than seems */
+                               /* necessary: the highest flonum may have */
+                               /* 15 leading 0 bits, so could be useless. */
+
+       bzero (bits, sizeof(LITTLENUM_TYPE) * MAX_PRECISION);
+
+       switch(what_kind) {
+       case 'f':
+       case 'F':
+       case 's':
+       case 'S':
+               precision = F_PRECISION;
+               exponent_bits = 8;
+               break;
+
+       case 'd':
+       case 'D':
+       case 'r':
+       case 'R':
+               precision = D_PRECISION;
+               exponent_bits = 11;
+               break;
+
+       case 'x':
+       case 'X':
+       case 'e':
+       case 'E':
+               precision = X_PRECISION;
+               exponent_bits = 15;
+               break;
+
+       case 'p':
+       case 'P':
+               
+               precision = P_PRECISION;
+               exponent_bits= -1;
+               break;
+
+       default:
+               make_invalid_floating_point_number (words);
+               return NULL;
+       }
+
+       generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD;
+
+       if (atof_generic (& return_value, ".", EXP_CHARS, & generic_floating_point_number)) {
+               /* as_warn("Error converting floating point number (Exponent overflow?)"); */
+               make_invalid_floating_point_number (words);
+               return NULL;
+       }
+       gen_to_words(words, precision, exponent_bits);
+       return return_value;
+}
+
+/* Turn generic_floating_point_number into a real float/double/extended */
+gen_to_words(words,precision,exponent_bits)
+LITTLENUM_TYPE *words;
+long int       exponent_bits;
+int precision;
+{
+       int return_value=0;
+
+       long int        exponent_1;
+       long int        exponent_2;
+       long int        exponent_3;
+       long int        exponent_4;
+       int             exponent_skippage;
+       LITTLENUM_TYPE  word1;
+       LITTLENUM_TYPE *        lp;
+
+       if (generic_floating_point_number.low > generic_floating_point_number.leader) {
+               /* 0.0e0 seen. */
+               if(generic_floating_point_number.sign=='+')
+                       words[0]=0x0000;
+               else
+                       words[0]=0x8000;
+               bzero (&words[1], sizeof(LITTLENUM_TYPE) * (precision-1));
+               return return_value;
+       }
+
+       /* NaN:  Do the right thing */
+       if(generic_floating_point_number.sign==0) {
+               if(precision==F_PRECISION) {
+                       words[0]=0x7fff;
+                       words[1]=0xffff;
+               } else {
+                       words[0]=0x7fff;
+                       words[1]=0xffff;
+                       words[2]=0xffff;
+                       words[3]=0xffff;
+               }
+               return return_value;
+       } else if(generic_floating_point_number.sign=='P') {
+               /* +INF:  Do the right thing */
+               if(precision==F_PRECISION) {
+                       words[0]=0x7f80;
+                       words[1]=0;
+               } else {
+                       words[0]=0x7ff0;
+                       words[1]=0;
+                       words[2]=0;
+                       words[3]=0;
+               }
+               return return_value;
+       } else if(generic_floating_point_number.sign=='N') {
+               /* Negative INF */
+               if(precision==F_PRECISION) {
+                       words[0]=0xff80;
+                       words[1]=0x0;
+               } else {
+                       words[0]=0xfff0;
+                       words[1]=0x0;
+                       words[2]=0x0;
+                       words[3]=0x0;
+               }
+               return return_value;
+       }
+               /*
+                * The floating point formats we support have:
+                * Bit 15 is sign bit.
+                * Bits 14:n are excess-whatever exponent.
+                * Bits n-1:0 (if any) are most significant bits of fraction.
+                * Bits 15:0 of the next word(s) are the next most significant bits.
+                *
+                * So we need: number of bits of exponent, number of bits of
+                * mantissa.
+                */
+       bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
+       littlenum_pointer = generic_floating_point_number.leader;
+       littlenums_left = 1+generic_floating_point_number.leader - generic_floating_point_number.low;
+       /* Seek (and forget) 1st significant bit */
+       for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++)
+               ;
+       exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 -
+ generic_floating_point_number.low;
+       /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
+       exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
+       /* Radix 2. */
+       exponent_3 = exponent_2 - exponent_skippage;
+       /* Forget leading zeros, forget 1st bit. */
+       exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
+       /* Offset exponent. */
+
+       lp = words;
+
+       /* Word 1. Sign, exponent and perhaps high bits. */
+       word1 =   (generic_floating_point_number.sign == '+') ? 0 : (1<<(LITTLENUM_NUMBER_OF_BITS-1));
+
+       /* Assume 2's complement integers. */
+       if(exponent_4<1 && exponent_4>=-62) {
+               int prec_bits;
+               int num_bits;
+
+               unget_bits(1);
+               num_bits= -exponent_4;
+               prec_bits=LITTLENUM_NUMBER_OF_BITS*precision-(exponent_bits+1+num_bits);
+               if(precision==X_PRECISION && exponent_bits==15)
+                       prec_bits-=LITTLENUM_NUMBER_OF_BITS+1;
+
+               if(num_bits>=LITTLENUM_NUMBER_OF_BITS-exponent_bits) {
+                       /* Bigger than one littlenum */
+                       num_bits-=(LITTLENUM_NUMBER_OF_BITS-1)-exponent_bits;
+                       *lp++=word1;
+                       if(num_bits+exponent_bits+1>=precision*LITTLENUM_NUMBER_OF_BITS) {
+                               /* Exponent overflow */
+                               make_invalid_floating_point_number(words);
+                               return return_value;
+                       }
+                       if(precision==X_PRECISION && exponent_bits==15) {
+                               *lp++=0;
+                               *lp++=0;
+                               num_bits-=LITTLENUM_NUMBER_OF_BITS-1;
+                       }
+                       while(num_bits>=LITTLENUM_NUMBER_OF_BITS) {
+                               num_bits-=LITTLENUM_NUMBER_OF_BITS;
+                               *lp++=0;
+                       }
+                       if(num_bits)
+                               *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-(num_bits));
+               } else {
+                       if(precision==X_PRECISION && exponent_bits==15) {
+                               *lp++=word1;
+                               *lp++=0;
+                               if(num_bits==LITTLENUM_NUMBER_OF_BITS) {
+                                       *lp++=0;
+                                       *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1);
+                               } else if(num_bits==LITTLENUM_NUMBER_OF_BITS-1)
+                                       *lp++=0;
+                               else
+                                       *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1-num_bits);
+                               num_bits=0;
+                       } else {
+                               word1|= next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - (exponent_bits+num_bits));
+                               *lp++=word1;
+                       }
+               }
+               while(lp<words+precision)
+                       *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS);
+
+               /* Round the mantissa up, but don't change the number */
+               if(next_bits(1)) {
+                       --lp;
+                       if(prec_bits>LITTLENUM_NUMBER_OF_BITS) {
+                               int n = 0;
+                               int tmp_bits;
+
+                               n=0;
+                               tmp_bits=prec_bits;
+                               while(tmp_bits>LITTLENUM_NUMBER_OF_BITS) {
+                                       if(lp[n]!=(LITTLENUM_TYPE)-1)
+                                               break;
+                                       --n;
+                                       tmp_bits-=LITTLENUM_NUMBER_OF_BITS;
+                               }
+                               if(tmp_bits>LITTLENUM_NUMBER_OF_BITS || (lp[n]&mask[tmp_bits])!=mask[tmp_bits]) {
+                                       unsigned long int carry;
+
+                                       for (carry = 1; carry && (lp >= words); lp --) {
+                                               carry = * lp + carry;
+                                               * lp = carry;
+                                               carry >>= LITTLENUM_NUMBER_OF_BITS;
+                                       }
+                               }
+                       } else if((*lp&mask[prec_bits])!=mask[prec_bits])
+                               lp++;
+               }
+
+               return return_value;
+       } else  if (exponent_4 & ~ mask [exponent_bits]) {
+                       /*
+                        * Exponent overflow. Lose immediately.
+                        */
+
+                       /*
+                        * We leave return_value alone: admit we read the
+                        * number, but return a floating exception
+                        * because we can't encode the number.
+                        */
+               make_invalid_floating_point_number (words);
+               return return_value;
+       } else {
+               word1 |=  (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits))
+                       | next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits);
+       }
+
+       * lp ++ = word1;
+
+       /* X_PRECISION is special: it has 16 bits of zero in the middle,
+          followed by a 1 bit. */
+       if(exponent_bits==15 && precision==X_PRECISION) {
+               *lp++=0;
+               *lp++= 1<<(LITTLENUM_NUMBER_OF_BITS)|next_bits(LITTLENUM_NUMBER_OF_BITS-1);
+       }
+
+       /* The rest of the words are just mantissa bits. */
+       while(lp < words + precision)
+               *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
+
+       if (next_bits (1)) {
+               unsigned long int       carry;
+                       /*
+                        * Since the NEXT bit is a 1, round UP the mantissa.
+                        * The cunning design of these hidden-1 floats permits
+                        * us to let the mantissa overflow into the exponent, and
+                        * it 'does the right thing'. However, we lose if the
+                        * highest-order bit of the lowest-order word flips.
+                        * Is that clear?
+                        */
+
+
+/* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
+       Please allow at least 1 more bit in carry than is in a LITTLENUM.
+       We need that extra bit to hold a carry during a LITTLENUM carry
+       propagation. Another extra bit (kept 0) will assure us that we
+       don't get a sticky sign bit after shifting right, and that
+       permits us to propagate the carry without any masking of bits.
+#endif */
+               for (carry = 1, lp --; carry && (lp >= words); lp --) {
+                       carry = * lp + carry;
+                       * lp = carry;
+                       carry >>= LITTLENUM_NUMBER_OF_BITS;
+               }
+               if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) {
+                       /* We leave return_value alone: admit we read the
+                        * number, but return a floating exception
+                        * because we can't encode the number.
+                        */
+                       *words&= ~ (1 << (LITTLENUM_NUMBER_OF_BITS - 1));
+                       /* make_invalid_floating_point_number (words); */
+                       /* return return_value; */
+               }
+       }
+       return (return_value);
+}
+
+/* This routine is a real kludge.  Someone really should do it better, but
+   I'm too lazy, and I don't understand this stuff all too well anyway
+   (JF)
+ */
+void
+int_to_gen(x)
+long x;
+{
+       char buf[20];
+       char *bufp;
+
+       sprintf(buf,"%ld",x);
+       bufp= &buf[0];
+       if(atof_generic(&bufp,".", EXP_CHARS, &generic_floating_point_number))
+               as_warn("Error converting number to floating point (Exponent overflow?)");
+}
+
+#ifdef TEST
+char *
+print_gen(gen)
+FLONUM_TYPE *gen;
+{
+       FLONUM_TYPE f;
+       LITTLENUM_TYPE arr[10];
+       double dv;
+       float fv;
+       static char sbuf[40];
+
+       if(gen) {
+               f=generic_floating_point_number;
+               generic_floating_point_number= *gen;
+       }
+       gen_to_words(&arr[0],4,11);
+       bcopy(&arr[0],&dv,sizeof(double));
+       sprintf(sbuf,"%x %x %x %x %.14G   ",arr[0],arr[1],arr[2],arr[3],dv);
+       gen_to_words(&arr[0],2,8);
+       bcopy(&arr[0],&fv,sizeof(float));
+       sprintf(sbuf+strlen(sbuf),"%x %x %.12g\n",arr[0],arr[1],fv);
+       if(gen)
+               generic_floating_point_number=f;
+       return sbuf;
+}
+#endif