do it "right"?
[unix-history] / usr / src / sys / kern / kern_clock.c
CommitLineData
db1f1262 1/* kern_clock.c 4.56 83/06/14 */
961945a8
SL
2
3#include "../machine/reg.h"
4#include "../machine/psl.h"
83be5fac
BJ
5
6#include "../h/param.h"
7#include "../h/systm.h"
d9b8447e 8#include "../h/dk.h"
0a34b6fd 9#include "../h/callout.h"
83be5fac
BJ
10#include "../h/dir.h"
11#include "../h/user.h"
f0da6d20 12#include "../h/kernel.h"
83be5fac 13#include "../h/proc.h"
83be5fac 14#include "../h/vm.h"
83be5fac
BJ
15#include "../h/text.h"
16
961945a8
SL
17#ifdef vax
18#include "../vax/mtpr.h"
19#endif
20
8487304f
KM
21#ifdef GPROF
22#include "../h/gprof.h"
23#endif
24
76b2a182
BJ
25/*
26 * Clock handling routines.
27 *
53a32545
SL
28 * This code is written to operate with two timers which run
29 * independently of each other. The main clock, running at hz
30 * times per second, is used to do scheduling and timeout calculations.
31 * The second timer does resource utilization estimation statistically
32 * based on the state of the machine phz times a second. Both functions
33 * can be performed by a single clock (ie hz == phz), however the
34 * statistics will be much more prone to errors. Ideally a machine
35 * would have separate clocks measuring time spent in user state, system
36 * state, interrupt state, and idle state. These clocks would allow a non-
37 * approximate measure of resource utilization.
76b2a182 38 */
6602c75b 39
76b2a182
BJ
40/*
41 * TODO:
88a7a62a
SL
42 * time of day, system/user timing, timeouts, profiling on separate timers
43 * allocate more timeout table slots when table overflows.
76b2a182 44 */
83be5fac 45
76b2a182 46/*
53a32545
SL
47 * The hz hardware interval timer.
48 * We update the events relating to real time.
49 * If this timer is also being used to gather statistics,
50 * we run through the statistics gathering routine as well.
76b2a182 51 */
260ea681 52/*ARGSUSED*/
b4e32d36 53#ifdef vax
f403d99f 54hardclock(pc, ps)
4512b9a4 55 caddr_t pc;
460ab27f 56 int ps;
83be5fac 57{
460ab27f 58#endif
b4e32d36 59#ifdef sun
460ab27f
BJ
60hardclock(regs)
61 struct regs regs;
62{
88a7a62a
SL
63#define ps regs.r_sr
64#define pc (caddr_t)regs.r_pc
460ab27f 65#endif
0a34b6fd 66 register struct callout *p1;
27b91f59 67 register struct proc *p;
f403d99f 68 register int s, cpstate;
88a7a62a 69 int needsoft = 0;
83be5fac 70
76b2a182
BJ
71 /*
72 * Update real-time timeout queue.
73 * At front of queue are some number of events which are ``due''.
74 * The time to these is <= 0 and if negative represents the
75 * number of ticks which have passed since it was supposed to happen.
76 * The rest of the q elements (times > 0) are events yet to happen,
77 * where the time for each is given as a delta from the previous.
78 * Decrementing just the first of these serves to decrement the time
79 * to all events.
80 */
88a7a62a
SL
81 p1 = calltodo.c_next;
82 while (p1) {
83 if (--p1->c_time > 0)
84 break;
85 needsoft = 1;
86 if (p1->c_time == 0)
87 break;
88 p1 = p1->c_next;
89 }
5da67d35 90
76b2a182
BJ
91 /*
92 * Charge the time out based on the mode the cpu is in.
93 * Here again we fudge for the lack of proper interval timers
94 * assuming that the current state has been around at least
95 * one tick.
96 */
83be5fac 97 if (USERMODE(ps)) {
88a7a62a
SL
98#ifdef sun
99 u.u_ar0 = &regs.r_r0; /* aston needs ar0 */
100#endif
101 if (u.u_prof.pr_scale)
102 needsoft = 1;
76b2a182
BJ
103 /*
104 * CPU was in user state. Increment
105 * user time counter, and process process-virtual time
877ef342 106 * interval timer.
76b2a182
BJ
107 */
108 bumptime(&u.u_ru.ru_utime, tick);
27b91f59
BJ
109 if (timerisset(&u.u_timer[ITIMER_VIRTUAL].it_value) &&
110 itimerdecr(&u.u_timer[ITIMER_VIRTUAL], tick) == 0)
111 psignal(u.u_procp, SIGVTALRM);
f0da6d20 112 if (u.u_procp->p_nice > NZERO)
41888f16
BJ
113 cpstate = CP_NICE;
114 else
115 cpstate = CP_USER;
83be5fac 116 } else {
76b2a182
BJ
117 /*
118 * CPU was in system state. If profiling kernel
119 * increment a counter. If no process is running
120 * then this is a system tick if we were running
121 * at a non-zero IPL (in a driver). If a process is running,
122 * then we charge it with system time even if we were
123 * at a non-zero IPL, since the system often runs
124 * this way during processing of system calls.
125 * This is approximate, but the lack of true interval
126 * timers makes doing anything else difficult.
127 */
41888f16 128 cpstate = CP_SYS;
ddb3ced5 129 if (noproc) {
460ab27f 130 if (BASEPRI(ps))
ddb3ced5 131 cpstate = CP_IDLE;
f0da6d20 132 } else {
76b2a182 133 bumptime(&u.u_ru.ru_stime, tick);
f0da6d20 134 }
83be5fac 135 }
27b91f59 136
9fb1a8d0
SL
137 /*
138 * If the cpu is currently scheduled to a process, then
139 * charge it with resource utilization for a tick, updating
140 * statistics which run in (user+system) virtual time,
141 * such as the cpu time limit and profiling timers.
142 * This assumes that the current process has been running
143 * the entire last tick.
144 */
145 if (noproc == 0 && cpstate != CP_IDLE) {
146 if ((u.u_ru.ru_utime.tv_sec+u.u_ru.ru_stime.tv_sec+1) >
147 u.u_rlimit[RLIMIT_CPU].rlim_cur) {
148 psignal(u.u_procp, SIGXCPU);
149 if (u.u_rlimit[RLIMIT_CPU].rlim_cur <
150 u.u_rlimit[RLIMIT_CPU].rlim_max)
151 u.u_rlimit[RLIMIT_CPU].rlim_cur += 5;
152 }
153 if (timerisset(&u.u_timer[ITIMER_PROF].it_value) &&
154 itimerdecr(&u.u_timer[ITIMER_PROF], tick) == 0)
155 psignal(u.u_procp, SIGPROF);
156 s = u.u_procp->p_rssize;
157 u.u_ru.ru_idrss += s; u.u_ru.ru_isrss += 0; /* XXX */
158 if (u.u_procp->p_textp) {
159 register int xrss = u.u_procp->p_textp->x_rssize;
160
161 s += xrss;
162 u.u_ru.ru_ixrss += xrss;
163 }
164 if (s > u.u_ru.ru_maxrss)
165 u.u_ru.ru_maxrss = s;
166 }
167
76b2a182
BJ
168 /*
169 * We adjust the priority of the current process.
170 * The priority of a process gets worse as it accumulates
171 * CPU time. The cpu usage estimator (p_cpu) is increased here
172 * and the formula for computing priorities (in kern_synch.c)
173 * will compute a different value each time the p_cpu increases
174 * by 4. The cpu usage estimator ramps up quite quickly when
175 * the process is running (linearly), and decays away exponentially,
176 * at a rate which is proportionally slower when the system is
177 * busy. The basic principal is that the system will 90% forget
178 * that a process used a lot of CPU time in 5*loadav seconds.
179 * This causes the system to favor processes which haven't run
180 * much recently, and to round-robin among other processes.
181 */
83be5fac 182 if (!noproc) {
27b91f59
BJ
183 p = u.u_procp;
184 p->p_cpticks++;
185 if (++p->p_cpu == 0)
186 p->p_cpu--;
76b2a182 187 if ((p->p_cpu&3) == 0) {
27b91f59
BJ
188 (void) setpri(p);
189 if (p->p_pri >= PUSER)
190 p->p_pri = p->p_usrpri;
83be5fac
BJ
191 }
192 }
76b2a182 193
53a32545
SL
194 /*
195 * If the alternate clock has not made itself known then
196 * we must gather the statistics.
197 */
198 if (phz == 0)
199 gatherstats(pc, ps);
53a32545 200
76b2a182
BJ
201 /*
202 * Increment the time-of-day, and schedule
203 * processing of the callouts at a very low cpu priority,
204 * so we don't keep the relatively high clock interrupt
205 * priority any longer than necessary.
206 */
207 bumptime(&time, tick);
88a7a62a
SL
208 if (needsoft)
209 setsoftclock();
f403d99f 210}
88a7a62a
SL
211#ifdef sun
212#undef pc
213#undef ps
214#endif
f403d99f 215
53a32545
SL
216/*
217 * Gather statistics on resource utilization.
218 *
219 * We make a gross assumption: that the system has been in the
220 * state it is in (user state, kernel state, interrupt state,
221 * or idle state) for the entire last time interval, and
222 * update statistics accordingly.
223 */
88a7a62a 224/*ARGSUSED*/
53a32545
SL
225gatherstats(pc, ps)
226 caddr_t pc;
227 int ps;
228{
229 int cpstate, s;
230
231 /*
232 * Determine what state the cpu is in.
233 */
234 if (USERMODE(ps)) {
235 /*
236 * CPU was in user state.
237 */
238 if (u.u_procp->p_nice > NZERO)
239 cpstate = CP_NICE;
240 else
241 cpstate = CP_USER;
242 } else {
243 /*
244 * CPU was in system state. If profiling kernel
245 * increment a counter.
246 */
247 cpstate = CP_SYS;
248 if (noproc && BASEPRI(ps))
249 cpstate = CP_IDLE;
250#ifdef GPROF
251 s = pc - s_lowpc;
252 if (profiling < 2 && s < s_textsize)
253 kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
254#endif
255 }
256 /*
257 * We maintain statistics shown by user-level statistics
258 * programs: the amount of time in each cpu state, and
259 * the amount of time each of DK_NDRIVE ``drives'' is busy.
260 */
261 cp_time[cpstate]++;
262 for (s = 0; s < DK_NDRIVE; s++)
263 if (dk_busy&(1<<s))
264 dk_time[s]++;
265}
266
76b2a182
BJ
267/*
268 * Software priority level clock interrupt.
269 * Run periodic events from timeout queue.
270 */
260ea681 271/*ARGSUSED*/
b4e32d36 272#ifdef vax
f403d99f 273softclock(pc, ps)
4512b9a4 274 caddr_t pc;
460ab27f 275 int ps;
f403d99f 276{
460ab27f 277#endif
b4e32d36 278#ifdef sun
961945a8 279softclock()
460ab27f 280{
88a7a62a
SL
281#define pc (caddr_t)u.u_ar0[PC]
282#define ps u.u_ar0[PS]
460ab27f 283#endif
f403d99f 284
27b91f59 285 for (;;) {
76b2a182
BJ
286 register struct callout *p1;
287 register caddr_t arg;
288 register int (*func)();
289 register int a, s;
290
27b91f59
BJ
291 s = spl7();
292 if ((p1 = calltodo.c_next) == 0 || p1->c_time > 0) {
293 splx(s);
294 break;
f403d99f 295 }
76b2a182 296 arg = p1->c_arg; func = p1->c_func; a = p1->c_time;
27b91f59 297 calltodo.c_next = p1->c_next;
27b91f59
BJ
298 p1->c_next = callfree;
299 callfree = p1;
4f083fd7 300 splx(s);
d01b68d6 301 (*func)(arg, a);
f403d99f 302 }
877ef342 303 /*
db1f1262
SL
304 * If trapped user-mode and profiling, give it
305 * a profiling tick.
877ef342 306 */
db1f1262
SL
307 if (USERMODE(ps)) {
308 register struct proc *p = u.u_procp;
309
310 if (u.u_prof.pr_scale) {
311 p->p_flag |= SOWEUPC;
312 aston();
313 }
314#ifdef vax
315 /*
316 * Check to see if process has accumulated
317 * more than 10 minutes of user time. If so
318 * reduce priority to give others a chance.
319 */
320 if (p->p_uid && p->p_nice == NZERO &&
321 u.u_ru.ru_utime.tv_sec > 10 * 60) {
322 p->p_nice = NZERO+4;
323 (void) setpri(p);
324 p->p_pri = p->p_usrpri;
325 }
326#endif
877ef342 327 }
83be5fac
BJ
328}
329
330/*
88a7a62a
SL
331 * Bump a timeval by a small number of usec's.
332 */
333bumptime(tp, usec)
334 register struct timeval *tp;
335 int usec;
336{
337
338 tp->tv_usec += usec;
339 if (tp->tv_usec >= 1000000) {
340 tp->tv_usec -= 1000000;
341 tp->tv_sec++;
342 }
343}
344
345/*
346 * Arrange that (*fun)(arg) is called in t/hz seconds.
83be5fac 347 */
88a7a62a 348timeout(fun, arg, t)
4512b9a4
BJ
349 int (*fun)();
350 caddr_t arg;
88a7a62a 351 register int t;
83be5fac 352{
c4710996 353 register struct callout *p1, *p2, *pnew;
88a7a62a 354 register int s = spl7();
83be5fac 355
88a7a62a
SL
356 if (t == 0)
357 t = 1;
c4710996
BJ
358 pnew = callfree;
359 if (pnew == NULL)
360 panic("timeout table overflow");
361 callfree = pnew->c_next;
362 pnew->c_arg = arg;
363 pnew->c_func = fun;
364 for (p1 = &calltodo; (p2 = p1->c_next) && p2->c_time < t; p1 = p2)
d45b61eb
SL
365 if (p2->c_time > 0)
366 t -= p2->c_time;
c4710996
BJ
367 p1->c_next = pnew;
368 pnew->c_next = p2;
369 pnew->c_time = t;
370 if (p2)
371 p2->c_time -= t;
83be5fac
BJ
372 splx(s);
373}
1fa9ff62
SL
374
375/*
376 * untimeout is called to remove a function timeout call
377 * from the callout structure.
378 */
27b91f59 379untimeout(fun, arg)
1fa9ff62
SL
380 int (*fun)();
381 caddr_t arg;
382{
1fa9ff62
SL
383 register struct callout *p1, *p2;
384 register int s;
385
386 s = spl7();
387 for (p1 = &calltodo; (p2 = p1->c_next) != 0; p1 = p2) {
388 if (p2->c_func == fun && p2->c_arg == arg) {
d01b68d6 389 if (p2->c_next && p2->c_time > 0)
1fa9ff62
SL
390 p2->c_next->c_time += p2->c_time;
391 p1->c_next = p2->c_next;
392 p2->c_next = callfree;
393 callfree = p2;
394 break;
395 }
396 }
397 splx(s);
398}
d01b68d6 399
76b2a182
BJ
400/*
401 * Compute number of hz until specified time.
402 * Used to compute third argument to timeout() from an
403 * absolute time.
404 */
d01b68d6
BJ
405hzto(tv)
406 struct timeval *tv;
407{
76b2a182
BJ
408 register long ticks;
409 register long sec;
d01b68d6
BJ
410 int s = spl7();
411
76b2a182
BJ
412 /*
413 * If number of milliseconds will fit in 32 bit arithmetic,
414 * then compute number of milliseconds to time and scale to
415 * ticks. Otherwise just compute number of hz in time, rounding
416 * times greater than representible to maximum value.
417 *
418 * Delta times less than 25 days can be computed ``exactly''.
419 * Maximum value for any timeout in 10ms ticks is 250 days.
420 */
421 sec = tv->tv_sec - time.tv_sec;
422 if (sec <= 0x7fffffff / 1000 - 1000)
423 ticks = ((tv->tv_sec - time.tv_sec) * 1000 +
424 (tv->tv_usec - time.tv_usec) / 1000) / (tick / 1000);
425 else if (sec <= 0x7fffffff / hz)
426 ticks = sec * hz;
427 else
428 ticks = 0x7fffffff;
d01b68d6
BJ
429 splx(s);
430 return (ticks);
431}
88a7a62a
SL
432
433profil()
434{
435 register struct a {
436 short *bufbase;
437 unsigned bufsize;
438 unsigned pcoffset;
439 unsigned pcscale;
440 } *uap = (struct a *)u.u_ap;
441 register struct uprof *upp = &u.u_prof;
442
443 upp->pr_base = uap->bufbase;
444 upp->pr_size = uap->bufsize;
445 upp->pr_off = uap->pcoffset;
446 upp->pr_scale = uap->pcscale;
447}
448
449opause()
450{
451
452 for (;;)
453 sleep((caddr_t)&u, PSLEP);
454}